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Fig. 1. Examples of qualitative results on ITOP dataset using our 3D human pose estimation method. (The estimated 3D human pose
may be not shown under the camera viewpoint)

Abstract— Point clouds-based 3D human pose estimation that aims to recover the 3D locations of human skeleton joints plays an
important role in many AR/VR applications. The success of existing methods is generally built upon large scale data annotated with 3D
human joints. However, it is a labor-intensive and error-prone process to annotate 3D human joints from input depth images or point
clouds, due to the self-occlusion between body parts as well as the tedious annotation process on 3D point clouds. Meanwhile, it is
easier to construct human pose datasets with 2D human joint annotations on depth images. To address this problem, we present a
weakly supervised adversarial learning framework for 3D human pose estimation from point clouds. Compared to existing 3D human
pose estimation methods from depth images or point clouds, we exploit both the weakly supervised data with only annotations of
2D human joints and fully supervised data with annotations of 3D human joints. In order to relieve the human pose ambiguity due
to weak supervision, we adopt adversarial learning to ensure the recovered human pose is valid. Instead of using either 2D or 3D
representations of depth images in previous methods, we exploit both point clouds and the input depth image. We adopt 2D CNN
to extract 2D human joints from the input depth image, 2D human joints aid us in obtaining the initial 3D human joints and selecting
effective sampling points that could reduce the computation cost of 3D human pose regression using point clouds network. The used
point clouds network can narrow down the domain gap between the network input i.e. point clouds and 3D joints. Thanks to weakly
supervised adversarial learning framework, our method can achieve accurate 3D human pose from point clouds. Experiments on the
ITOP dataset and EVAL dataset demonstrate that our method can achieve state-of-the-art performance efficiently.
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1 INTRODUCTION

Human pose estimation plays a key role in applications such as AR/VR,
special effects and human-computer interactions, and it can help in the
understanding of the intentions underlying interactions and provide
proper feedback. Recently, with the boom in the development of depth
sensors, rapid progress has been made to recover 3D human poses using
point clouds as input, which has been one of the major image-based
approaches to achieve high-quality 3D human poses.

Though many efforts on human pose estimation have been made in
recent literature, point clouds based 3D human pose estimation is still
challenging. First, occlusions due to multiple persons and human body
self-occlusion can hinder the performance of human pose estimation.
Secondly, it is a labor-intensive and error-prone process to manually
label 3D human joints from input depth or point clouds, due to the self-
occlusion between body parts as well as tedious annotation on 3D point
clouds. Thirdly, it is a key issue to represent or sample the input point
clouds in an effective manner. The methods [12, 25] project 3D point
clouds to 2D representation and use 2D convolution neural network,
which could lose the 3D context of the point clouds. Due to the domain
gap between 2D depth and 3D human joints, it is challenging to learn
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Fig. 2. Overview of our 3D human pose estimation network. The network consists of two modules, the point clouds proposal module and the 3D
pose regression module. Using the input depth map, we first estimate the 2D human pose, and use it to sample and normalize the extracted point
clouds from depth. Then we use the initial 3D pose converted from the estimated 2D pose and the normalized point clouds to predict the final 3D
human pose.

the mapping between 2D depth and 3D human joints. Several methods
adopt 3D volume (voxel or TSDF) [19, 33, 39] or point clouds repre-
sentations [24, 26]. For 3D volume representation, 3D CNN is often
used for feature extraction and can achieve high-quality human pose
performance. However, the network contains more network parame-
ters that those networks using depth as input and is computationally
expensive. For point clouds representation, existing PointNet-based
methods [24, 26] have the advantage of light-weighted networks, and
often adopt point sampling strategy to reduce the computational effort
due to the massive input points, while it may affect local details of the
input and decrease the pose estimation performance. It is a key issue to
design an effective point sampling strategy.

To address the difficulty of 3D human joint annotation, we observe
that it is easier to construct human pose datasets with 2D human joint
annotations on depth image. For example, we can label 2D human joints
on depth image via aligned color image using an off-the-shelf RGBD
camera. Though 2D human joints is closely related to 3D human pose,
it can only provide weak supervision of 3D human pose. Therefore, it
is challenging to design an effective approach to exploit fully labeled
dataset with 3D joints as well as weakly labeled data with 2D joints
only to achieve better 3D human pose estimation performance.

In this paper, we propose a new human pose estimation network
from point clouds, which can be trained in a weakly-supervised manner.
The key idea of our method is that, the network is designed to predict
3D human poses so that during the training stage for fully labeled
data the estimated 3D joints are well matched with the ground truth
3D joints, and for weakly labeled data that contain annotations of 2D
joints the 2D projection of estimated 3D joints can align well with
the ground truth 2D joints. To handle the possible ambiguity from
the weakly labeled data, we adopt a discriminator network to judge
whether the reconstructed human joints are plausible or not and enforce
the bone length ratios. Our method consists of two modules, point
clouds proposal module and 3D pose regression module. In the point
clouds proposal module, we extract 2D human pose via a 2D heat map
from the input depth using a compact yet effective fully convolutional
network, and use the 2D human pose to sample the point clouds. Then
the sampled point cloud is normalized with the estimated root joint; In
the 3D pose regression module, we recover 3D human pose following
a generative adversarial network (GAN). For the generator, we recover
the human pose using the hierarchical PointNet-based regression with
the sampled point clouds as input. For the discriminator, we use a fully
connected neural network to distinguish the estimated human pose

from the ground truth human pose. Experimental results show that our
method achieves state-of-the-art results, and that weakly supervised
learning with additional images with 2D joints is effective. Our method
can directly estimate the human pose from the point clouds with back-
ground information, and we demonstrate the reliability of our approach
on the ITOP dataset [12] and EVAL dataset [8].

Compared to existing methods using either 2D or 3D representations
of depth images, we exploit both point clouds and the input depth
images. We adopt 2D CNN to extract 2D human joints from depth
images, 2D human joints could help us get initial 3D human joints and
select sample points that reduce the computation cost of the 3D pose
regression network built upon PointNet and enhance the performance
of the human pose estimation.

The main contributions of our work can be summarized as follows.

1 We propose a new weakly-supervised deep learning network for
the 3D human pose estimation problem. We exploit both the
weakly supervised data with only annotations of 2D human joints
and fully supervised data with annotations of 3D human joints.
To relieve the human pose ambiguity due to weak supervision, we
adopt adversarial learning to ensure that the recovered human pose
is valid. Experimental results demonstrate that with the additional
weakly supervised data, our network could achieve better results
than the network with only fully supervised data. Our research can
inspire human pose/shape recovery tasks in which full supervision,
such as 3D joints or shapes, is not available.

2 Compared to existing human pose estimation methods that require
human foreground detection/segmentation, our method is capable
of human pose estimation without explicit human foreground
detection/segmentation.

3 Our method achieves state-of-the-art, time-efficient 3D human
pose estimation performance on the ITOP and EVAL datasets.

2 RELATED WORKS

In this section, we review related researches including 3D human pose
estimation, weakly supervised learning, and neural networks for 3D
representations.

2.1 3D Human Pose Estimation
3D human pose estimation methods can be divided into two categories,
namely, the discriminative methods and the generative methods.
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Fig. 3. Illustration of our point clouds proposal module. We detect 2D joints via joint heatmaps, use the 2D joints to sample the point clouds, and the
sampled point clouds is then normalized by the estimated position of root joint and the size of a pre-defined bounding box.

Discriminative Methods. Discriminative methods directly estimate
3D human pose from the input image. Present random forest based
methods can be classified into discriminative category [10, 28, 35].
Recently, several convolutional neural network (CNN) based methods
are used to predict 3D human pose under the discriminative framework.
Pavlakos et al. [21] use a 3D volumetric representation for 3D human
pose, and adopt CNN to predict the likelihood of 3D joints in each
voxel. Sun et al. [30] propose an integral operation which combines the
task of heatmap representation and joint regression. In this way, they
could avoid the non-differentiable post-processing and quantization
error caused by heatmap representation. Marin-Jimenez et al. [16]
design a representation for 3D human pose via a linear combination of
the pose prototypes, and then use that representation to estimate the 3D
human pose from depth. Though discriminative methods can directly
get 3D human pose from the image, these methods are severely affected
by the scarcity of training data and could achieve poor accuracy of
human pose estimation for extraordinary poses.

Generative Methods. Generative methods often use the 2D informa-
tion extracted from an input image to infer reasonable 3D poses for
the image. These methods have the advantage that the 2D information
extraction step only requires data with easily-accessed annotations such
as 2D joint locations [2, 3, 5, 6, 29, 31, 34, 36]. Martinez et al. [17] use
a very simple yet effective combination of linear layer to lift the 2D
human pose to 3D human pose, and can achieve reasonable results. In
3D human pose estimation with depth images, Wang et al. [32] use a
fully convolutional network to estimate the 2D pose in a depth image,
and predict the 3D pose by an inference built-in MatchNet [11]. Haque
et al. [12] present a heatmap-like 2D glimpse from a depth image, and
use the recurrent network to predict the 3D pose in an iterative manner.
However, the performance of generative 3D human pose methods is
largely affected by the accuracy of 2D information extraction.

2.2 Weakly-supervised Learning
In recent years, we witnessed the fast development of deep learning
methods. However, most of the deep learning methods require large-
scale labeled training data. It is well established that annotating large-
scale data is expensive and time-consuming. For 3D human pose
estimation using point clouds, we also suffer from the lack of large-
scale training data due to the fact that it is even more difficult to annotate
3D human joints from point clouds.

Followed by the guideline in [40], we divide the weak supervision
learning into three types. The first type [4,38] is incomplete supervision,
where the training data are a mixture of unlabeled data and a small
amount of labeled data. In this case, the labeled data is too limited to
train a good model, while the unlabeled or semi-labeled data are very
easy to acquire. The second type [7, 37] is inexact supervision, where
the labels are coarse or inexact. The third type [1, 9] is inaccurate
supervision, which means the given label may not be the ground truth.

As for 3D human pose estimation scenario, we mainly discuss the
incomplete supervision about the weakly-supervised learning methods.
Recently, several 3D human pose estimation methods using weakly-

supervised manner are proposed [14, 22, 27, 38]. Zhou et al. [38]
propose a weakly supervised method for color-based 3D human pose
estimation to use the 2D joint labels and 3D joint labels to predict 3D
human pose. Pavlakos et al. [22] propose a pictorial structure model to
predict human pose from the multi-view heatmaps. In [27], the authors
take the multi-view consistency as constraint, which makes them only
need a few data with 3D label. Kocabas et al. [14] propose to use paired
multi-view images to predict the 3D human pose under the constraint of
epipolar geometry. These methods are all designed for 3D human pose
estimation using color images as input. So far, less attentions are paid
on weakly-supervised learning of 3D human pose using depth image or
point clouds as input.

2.3 Neural Networks for 3D Representations
3D representations such as point clouds and 3D volume are effective for
scene understanding and pose estimation, and for these representations,
point clouds networks and voxel-based CNNs are widely used models.

Point Clouds Networks. The point clouds networks directly use point
clouds as input. Qi et al. [24] propose an end-to-end network named
PointNet, which extracts point-wise features and can be applied to 3D
object classification and point-level semantic segmentation tasks. Qi
et al. [26] propose PointNet++, which enhances PointNet by learning
the local structure on different scales. Motivated by the idea of using
convolution on point clouds, Li et al. [15] propose PointCNN that
predicts a transformation matrix and applies it before the convolution,
and achieve the state-of-the-art performance on 3D object classification
and point-level semantic segmentation tasks. To accelerate the 3D
detection in hybrid camera, Qi et al. [23] propose the Frustum PointNet,
which uses the 2D information to get a frustum and use the PointNet to
get the 3D object detections. This method is more time-efficient due
to the fact that 2D detection can reduce the point clouds region that
requires object detection effort.

Voxel-based CNNs. Voxel-based CNN methods usually convert the
point clouds into 3D volumetric representation and use 3D CNN to
extract features [18, 25]. Zhou et al. [39] propose an end-to-end frame-
work to predict the object’s bounding box in the 3D space by dividing
the 3D point clouds into 3D voxels. In 3D human pose estimation,
Chang et al. [19] voxelize the point clouds and apply 3D CNN to the
voxelized point clouds to predict the 3D pose.

3 METHODOLOGY

We propose a 3D human pose estimation architecture from a single
depth map under a GAN framework, which reconstructs the locations
of 3D human joints q ∈RJ×3 (R is the set of real numbers, J is the
joint number) in the depth camera coordinate system. As shown in
Fig. 2, our generator network aims to reconstruct human pose and
consists of two modules: a point cloud proposal module and a 3D pose
regression module. The generated human joints from the last stage are
judged by the discriminator network to be real or fake. The details of
the generator network and discriminator network will be elaborated in
the following sections.



3.1 Preliminary: PointNet and PointNet++
We first provide some background about two representative point
clouds-based networks; a more detailed introduction can be found
in [24, 26]. PointNet is a network architecture that can extract features
from 3D unordered point clouds. PointNet usually takes the point
coordinate and other features such as surface normals as input, which
are then mapped to a higher-dimensional space using a multi-layer
perceptron. The main limitation of PointNet is its inability to capture
the local structure of the point clouds metric space, which makes it
difficult to understand the detailed spatial pattern. To solve this prob-
lem, Qi et al. [26] proposed a hierarchical PointNet named PointNet++,
which defines the partitioning of point clouds using the neighborhood
in Euclidean space (i.e. the sampling and grouping step of PointNet++)
and applies PointNet recursively to the neighborhood. Given the point
clouds p ∈ RM,c, where M is the point number and c is the feature
dimension of the point clouds, PointNet++ adopts farthest point sam-
pling to select M1 points as the centroid of the neighborhood, and then
uses PointNet to extract the features from the k-nearest neighbor. The
extracted features are then recursively fed into the next sampling level
until the level reaches the manually defined level.

3.2 Point Clouds Proposal Module
The point clouds proposal module aims to design an effective point
clouds sampling via 2D human pose, which could improve the effi-
ciency in the 3D pose regression module (See Section 3.3). The module
consists of two steps, i.e. 2D pose detection, and point clouds sampling
and normalization.

2D Pose Detection. We perform 2D human pose estimation according
to the procedure of Newell et al. [20] due to the compactness and high
performance of their network. Details of the network structure are
shown in the left part of Fig. 3.

We set the loss function as the L2 distance between the predicted
heat map and the heat map generated from the ground truth 2D joint
locations q∗2d . The 2D human pose q2d ∈ RJ×2 can be recovered
by argmax operation on the predicted heat map. Notice that argmax
operation is not continuous or differentiable, we have to train this
network separately. We pretrain this model on our synthesis dataset
and fine-tune it on the target dataset. The average 2D joint error with
our trained model on the ITOP dataset is below 5 pixels.

Point Clouds Sampling and Normalization. The above 2D joint
detection can guide us to get pose-aware sampled point clouds to
recover the 3D human pose. We crop the bounding box of detected 2D
joints from depth map, then extract J local image patches of d = 20×20
pixels centered at the detected 2D joints. With the intrinsic matrix of
the depth camera, we backproject the image patches to 3D point clouds
p∈RN×3 (N = d×J is the number of the total sampled points), named
the sampled point clouds hereafter.

Then we get the position of root joint proot by feeding the sampled
point clouds to a tiny regression network with ResNet backbone, named
root estimation network (RENet). With the root joint proot , the sampled
point clouds can be normalized to [−1,1]3 by:

pnorm =
p− proot

L
(1)

where pnorm is the normalized point clouds of p, proot is the position
of estimated root joint, and L is the size of a predefined bounding box,
set to L = [1.5,1.5,2] in our experiments. We apply this transformation
to the sampled point clouds, the ground truth and the initial 3D human
pose.

3.3 3D Pose Regression Module
The 3D pose regress module aims to predict the 3D human pose via the
2D human pose and the sampled point clouds. We first obtain the initial
pose qinit by backprojecting the estimated 2D pose q2d into 3D space
and setting the depth of each joint to our estimated depth of the root
joint approximately. Then we estimate the joint offsets ∆q to the initial
pose qinit , and the estimated pose q can be updated by q = qinit +∆q.

3.3.1 Network Architecture
Our 3D pose regression network follows GAN architectures, consists
of generator and discriminator networks.

Generator The generator aims to obtain the joint offsets ∆q of qinit .
The network architecture of the generator i.e. the 3D pose regression
module is shown in Fig. 2. The inputs of the 3D pose regression network
are the normalized point clouds pnorm. We feed pnorm to hierarchical
PointNet [26], and obtain the joint offsets ∆q. The hierarchical PointNet
uses has three point-abstraction levels. The number of local regions in
each level is N1 = 64,N2 = 32,N3 = 8, and each local region contains
k = 8 points. The extracted features of each level are C1 = 128,C2 =
256,C3 = 1024, respectively. After we obtain the joint offsets ∆q, we
can update the 3D human pose by q = qinit +∆q.

Discriminator The discriminator aims to judge whether the recovered
3D human pose is real or fake. Fig. 4 shows the structure of our
discriminator network. The network uses the predicted 3D joint position
as input, and predicts whether the predicted 3D joint position is real
or fake. The discriminator consists of two fully connected layers (FC)
with leaky RELU functions and skip connections, one fully connected
layer with a leaky ReLU function, another fully connected layer, and a
softmax function.
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Leaky ReLuJ 
x 
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Pose

FC
+

Leaky ReLu

RealFC
+

Softmax Fake

Fig. 4. The network structure of the discriminator.

3.3.2 Loss Function
We design a 3D pose regression network using both the fully labeled
data and the weakly labeled data. For the fully labeled data, i.e. S f ull =
{I,q∗2D,q

∗
3D}, we use full 3D joint supervision to enforce 3D human

joint supervision, and we adopt 2D joint projection loss, 3D joint loss
and bone length ratio loss. For the weakly labeled data, i.e. Sweak =
{I,q∗2D}, we can only adopt weak supervision of 3D joints with the 2D
joint annotations, and use the 2D joint projection loss and bone length
ratio loss.

The loss function of our generator can be defined as follows:

Lreg(G) =Iλ3DL3D(∆q|q∗3D)+

(1− I)λ2DL2D(∆q|q∗2D)+λboneLbone
(2)

where I is the indicator function, which assesses whether the data are
fully labeled data or weakly labeled data, and λ3D and λ2D are the loss
weights.

3D Joint Loss. The joint loss L3D enforces the predicted position of
the 3D joints to be close to the ground truth position of the 3D joint.
L3D can be defined as follows:

L3D = ‖q∗− (qinit +∆q)‖2 (3)

where q∗ is the ground truth 3D human pose, qinit is the predicted initial
pose, and ∆q is the predicted offset between the initial pose and the
ground truth pose.

2D Joint Loss. We use 2D joint label supervision to learn the 3D joint
location, and adopt a 2D joint loss L2D(∆q|q∗3D,q

∗
2D), which can reduce

the searching space of the 3D human pose. The 2D joint loss is defined
as follows:

L2D = ‖q∗2D−q2D‖2 (4)

where q∗2D is the ground truth 2D joint location, q2D = K(qinit +∆q) is
the estimated 2D joint location and K is the camera intrinsic matrix.

Bone Length Ratio Loss. To penalize illogical bone length ratios, we
add a bone length ratio regularization loss Lbone to generate the 3D
human pose. The bone length loss Lbone indicates that the bone length
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ratio computed with the predicted joints is as close as possible to the
average bone length in the training dataset

Lbone =
1
|E| ∑

e∈E
(

le
l̄e
− r̄)2, r̄ =

1
|E| ∑

e∈E

le
l̄e

(5)

where E is the set of all pairs of the bones in the used human skeleton
model, r̄i is the average bone length ratio between the predicted skeleton
le and the average skeleton length l̄e for the subjects in the training
dataset. This term help to yield the human poses, the bone length ratio
of which is close to that in the training dataset; thus, this term could
enforce a more reasonable skeleton model.

3.3.3 Adversarial Learning
We adopt the 3D joint loss L3D for the fully labeled data and the 2D
joint loss L2D for the weakly labeled data to learn the human pose
estimation model along with the bone length ratio loss Lbone. The 2D
joint loss forces the network to predict 3D joints that can be reprojected
to the given 2D joint locations. However, it is generally ill-posed to
reconstruct 3D human joints from 2D joints, i.e.many illogical 3D
joint configurations can lead to the same 2D joints. To regularize the
ill-posed issue, we adopt a discriminator network D to judge whether
the reconstructed human joints are valid.

Fig. 5 illustrates the details of our human pose estimation network.
The generator network is the 3D pose regression network, and the
discriminator uses a fully connected neural network to distinguish the
estimated human pose and the ground truth human pose. Denote q and
q∗ as the estimated and the corresponding ground truth human poses,
respectively. The loss function of our network built upon a GAN can
be formulated as:

LG
adv(q,q

∗) = Eq∗ [logD(q∗)]+Eq[log(1−D(q))] (6)

where q = G(pnorm) is the predicted human pose with input point
clouds pnorm.

A generator G is trained to minimize the objective function (6)
against an adversarial network D that tries to maximize it. We alterna-
tively optimize G and D based on the minmax strategy

min
G

max
D

Lreg(G)+λadvLadv(G,D) (7)

where λadv is the weight of the adversarial loss.
Following the typical training procedure of the GAN, we alterna-

tively update between discriminator D and generator G while fixing the
parameters of the other network.

Updating Discriminator D. We train the discriminator D to classify
between the ground truth 3D pose and the predicted 3D pose, which
are labeled as 1 and 0, separately. Updating discriminator requires the
ground truth 3D human pose; thus, we adopt the fully labeled data in

this step. The optimization problem is equal to minimizing the binary
cross-entropy loss LBCE(l∗, l) =−l log(l∗)− (1− l) log(1− l∗), where
l∗ is the output of the discriminator and l is the target label. To update
the discriminator, we use the following loss function:

LD
adv(q,q

∗) =− logD(q∗)− log(1−D(q)) (8)

Updating Generator G. To train the generator, the generated 3D
human pose should be realistic enough to fool the discriminator. There-
fore, the discriminator is trained to minimize − log(D(q)).

To update the generator G, we utilize both the discriminator loss and
the regression loss

∑
i∈S f ull

(Lreg +λadvLG
adv)+ ∑

j∈Sweak

λadvLG
adv (9)

where the adversarial loss Ladv is computed for both fully labeled data
S f ull and weakly labeled data Sweak, which could benefit the training
convergence on weakly labeled data.

3.4 Implementation Details

All our experiments are implemented within the TensorFlow framework
on a workstation with two Intel Core i7 4790K processors, 32GB of
RAM and an Nvidia Tesla K40 GPU.

The ITOP dataset [12] contains two kinds of data: clean, human-
approved data with both 2D labels and 3D labels, and noisy human
body-part labeled data with only 2D labels. We treat the clean data as
the fully labeled dataset and the noisy data and the generated data as
the weakly labeled dataset. In each mini-batch, we randomly sample
5 image pairs from both the fully labeled dataset and weakly labeled
dataset. We conduct online data augmentation through scaling between
[1,1.5] and rotating between [−8◦,8◦].

In our experiments, we find it more stable and effective to train
the whole system in two stages. In stage 1, we initialize the 2D pose
estimation module. For point clouds proposal stage, we set the width
and height of each cropped patch to 20 pixels. In stage 2, we train our
3D pose regression module in a weakly supervised adversarial manner.
Since the argmax operation is not differentiable, we did not train two
stage network in an end-to-end manner. For each point-set abstraction
level in hierarchical PointNet, we sample the point set from each patch
and then reshape it into a holistic patch. This method could relieve the
spatial context loss of 3D human joints in conventional random point
sampling strategy [26].

We use Adam optimizer with a learning rate 0.0001 and a batch size
of 10. The learning rate is set to decay 0.05% every 1000 iterations.
The training process is stopped after 50 epochs. In our experiments, we
set the weight λ3D, λbone, λ2D and λadv as 10, 1, 1e-3 and 1.



Fig. 6. Qualitative results from the ITOP dataset (the first three rows) and the EVAL dataset (the fourth row). The odd columns show the input depth
map, and the even columns show our results. (The estimated 3D human pose may be not shown under the camera viewpoint)

4 EXPERIMENTS

In this section, we first introduce the used datasets and evaluation
metrics, then conduct systematic evaluations of our methods: 1) self-
comparisons and ablation study (shown in 4.2); 2) comparisons with
the state-of-the-art (shown in 4.3), and show the qualitative results in
Fig. 6.

(a) (b) (c) (d) (e)

Fig. 7. Qualitative example of our self-comparison results. From left to
right, we show (a) the input depth map, (b) the ground truth pose, (c) our
result, (d) the result without bone length constraint, and (e) the result
without weakly supervised learning.

4.1 Datasets and Metrics
In our experiment, we use the ITOP dataset [12] and Stanford EVAL
dataset [8] to evaluate our method. The ITOP dataset contains more than
40K training samples and 10K testing samples from 20 subjects. Each
subject has 15 actions. The dataset provides both side-view data and
top-view data. The 3D pose ground truth contains N = 15 joints. We do
not perform any data augmentation on this dataset during training. The
EVAL dataset consists of 9K depth images from 3 subjects performing
8 different actions.

To evaluate the performance of our human pose estimation method,
we use the following two standard metrics [19]. The first set of met-
rics are the percentage of correct keypoints (PCK) and mean average
precision (mAP). The PCK value is the percentage of detected joints

out of all human joints within a given distance error threshold. The
mAP is the average PCK for all human body parts. It shows the overall
robustness of the pose estimation methods. The other set of metric is
the mean joint error, which is defined as the mean 3D distance error of
each human joint. The mean joint error can indicate the accuracy of
each joint.

4.2 Self-comparison and Ablation Study

We conduct ablation studies to demonstrate the contribution of each
component in our model and help us understand the design of our
network better. We provide several examples under different self-
comparison settings in Fig. 7 to visualize the effect of different com-
ponents in our network. We use the ITOP dataset for the ablation
study, and the detailed results are shown in Fig. 8 and Table 1. More
evaluations are shown in the supplementary video.

Effect of 3D Initial Pose. To demonstrate the effect of the 3D initial
pose for our 3D pose regression network, we compare the human pose
performance with the 3D initial pose by directly predicting the 3D
human pose by keeping the rest of our network fixed. As shown in
Fig. 8(a), the mean average precision is 14 percentage points higher
using the 3D initial pose at the 10 cm threshold, which indicates that
the 3D initial pose is effective. We hypothesize that it is easier to learn
the residue to the 3D initial pose than to directly learn the 3D human
pose similar to the spirit of ResNet [13].

Effect of the Background. To demonstrate that our method is not
affected by the background, we compare our method with the model
trained without the background point clouds. For the model trained
without the background, we skip the background during the point
sampling process. As shown in Fig. 8, we observe that the PCK curves
between the models with and without background points are similar.
This demonstrates that the background has little effect on the robustness
of our method. This result may be explained by the fact that the selected
point clouds for 3D pose regression network are mainly around the
initial joints and only contain few background points.

Effect of Bone Length Ratio Loss. To better understand the effect
of our bone length ratio loss, we evaluate it in our pose regression
network by removing the bone length ratio loss. As shown in Fig. 8,
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Fig. 8. The ablation study for different components in our method. (a) PCK by removing different terms in our method. (b) Mean 3D joint distance
error with different levels of 2D pose errors in our method.

the accuracy with the bone length constraint is 2.8 percentage points
higher than that without it at the 10 cm threshold. The mean joint error
without the bone length ratio loss is approximately 0.53 cm higher than
that with the bone length ratio loss. Fig. 7 shows a qualitative example
of the impact of the 3D bone length constraint. We observe that the
estimated left shoulder is of the wrong bone length compared with the
result with bone length constraint and the ground truth. These results
can be interpreted by the fact that bone length ratio loss can constrain
the inter-joint constraint and minimize the occurrence of infeasible 3D
human joints by enforcing the bone length ratio computed with the
estimated joints.

mAP error (cm)
Our method 89.59 5.51
w/o background points 89.27 5.60
w/o initial pose 75.64 8.97
w/o bone length constraint 86.85 6.04
w/o weak supervision 84.58 6.68
w/o adversarial learning 87.20 5.95

Table 1. Detailed self-comparison results.

Effect of Weakly Supervised Learning. We also study the impact of
the weakly supervised learning on our model. To evaluate the effective-
ness of weakly supervised learning, we also conduct the experiments
only using the fully labeled data to train the model and fixing the rest
of the network. The results are shown on the left of Fig. 8. We observe
that the our method with weakly supervised learning improves the mAP
of the model without weakly supervised learning by approximately 6
percentage points at a threshold of 10 cm.

Effect of Adversarial Learning. We investigate the effect of adversar-
ial learning by removing the adversarial loss and fixing the rest of the
network. As shown on the left side of Fig. 8, the adversarial learning
method helps to improve the mAP by approximately 0.8 percentage
point higher at the 10 cm threshold.

Effect of 2D Pose Estimation Error. To demonstrate that our 3D
regression network is robust to the error in the estimated 2D joint
positions, we add random offsets to the estimated 2D joint positions
to simulate the 2D joint estimation error, and compare the mean joint
error under different offsets in the u-axis and v-axis of the image plane.
We adopt four sets of offset parameters, i.e. 0 pixel, 2 pixels, 5 pixels
and 10 pixels. As seen on the right side of Fig. 8, the performance
of our network under a 5 pixel offset in each axis is still reasonably
good. These results may be explained by the fact that the sampled point
clouds could always contain the correct joint under this circumstance.
However, when the 2D joint error is too large (see performance with

10 pixel offset), we cannot ensure that the sampled point clouds could
contain the correct joint and its region of interest from the point clouds,
and thus the performance may be poor.

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 9. Qualitative comparisons with the state-of-the-art methods.The
first row shows results on the ITOP dataset, and the second row shows
the results on the EVAL dataset. From left to right, we show the input
depth map (a), the ground truth (b), the result of our method (c) and the
result of the V2V-PoseNet method (d).

4.3 Comparisons with State-of-the-art Methods

We evaluate the performance of our methods on the ITOP and EVAL
datasets. During the comparison, we use state-of-the-art 3D human
pose estimation methods, including the viewpoint-invariant feature-
based method [12], the inference embedded method [32] and V2V-
PoseNet [19]. The qualitative comparison results are shown in Fig. 9,
and Fig. 10 shows the quantitative results on the ITOP dataset. Fig. 6
shows examples of the qualitative results, and more experiments are
shown in the supplementary video.

As shown in Fig. 10, our method can achieve state-of-the-art per-
formance on the ITOP dataset compared with other 3D human pose
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Fig. 10. Comparison of the proposed method with state-of-the-art methods. (a) mAP over different distance thresholds for different methods; (b)
Mean 3D joint distance error for different methods. VI: viewpoint-invariant feature-based method [12].

mAP (ITOP) mAP (EVAL)
Body part [32] [12] [19] Ours [12] Ours

Head 95.6 98.1 98.25 98.15 93.9 91.43
Neck 94.2 97.5 98.8 99.47 94.7 92.66

Shoulders 87.3 96.5 98.25 94.69 87 88.21
Elbows 72.5 73.3 78.73 82.80 45.5 77.14
Hands 53.8 68.7 67.21 69.10 39.6 64.37
Torso 85.4 85.6 98.29 99.67 - -
Hips 70.5 72 90.25 95.71 - -
Knee 64.2 69 91.68 91.00 83.4 88.21
Feet 58.8 60.8 85.87 89.96 92.3 83.81

Mean 72.62 77.4 87.69 89.59 74.1 81.73
Table 2. Comparison of joint mean average precision to state-of-the-art
methods.

estimation methods from point clouds. The detailed comparison results
on the ITOP dataset and EVAL dataset are shown in Table 2.

For the ITOP dataset, the mean average precision with our method
is 6.1 percentage points higher than that with V2V-PoseNet [19] if
the threshold is set to 5 cm, and is 1.9 percentage points higher un-
der the threshold of 10 cm. For the mean joint error, our method
achieves better results compared with the state-of-the-art method V2V-
PoseNet [19]. The average joint errors with our method are 2.7 cm,
4.5 cm, and 1.3 cm lower than those with the viewpoint-invariant
feature-based method [12], the inference embedded method [32] and
V2V-PoseNet [19], respectively. In particular, we can achieve better
results on the lower part of the body. The reason is that the accuracy of
our method benefits from the robust 2D pose estimation process, and
the 2D human pose estimation of lower body is overall better than that
of the upper body. Furthermore, the 3D joint variance of the lower body
in the ITOP dataset is lower than that of the upper body. Therefore, it
could be easier for us to learn the 3D context of the point clouds and
joints of the lower body and obtain reasonable results. Fig. 9 shows
the qualitative results for the ITOP dataset. We can observe that our
method can predict reasonable 3D human poses.

For the EVAL dataset, we compare our method with the state-of-
the-art viewpoint-invariant feature-based method [12]. As shown in
Table 2, the mean average precision (mAP) with our method is 7.6
percentage points higher than that with the method [12] if the threshold
is set to 10 cm.

4.4 Runtime Analysis
We further investigate the efficiency of the proposed method. The
training time of the ITOP dataset is 3 hours on a Tesla K40C graphic
card. The testing time is 20 fps using the same GPU, and can be
further increased in a multi-GPU environment. The detailed runtime

Methods FPS mAP (ITOP)
Our method 24.4 89.59

[12] 0.6 77.4
[32] 7.4 72.62
[19] 3.5 87.69

Table 3. Comparison of runtime and accuracy performance with state-of-
the-art methods

comparison with state-of-the-art methods is shown in Table 3. During
the comparison, we ran the models of state-of-the-art methods on
the same workstation. We observe that our method is approximately
7+times faster than the other methods while achieving state-of-the-art
accuracy.

5 CONCLUSIONS

In this work, we adopt an efficient approach that exploits both the
2D and 3D representations of depth images or point cloud to achieve
accurate 3D human pose estimation, and propose an effective weakly
supervised adversarial learning method to learn 3D human pose estima-
tion model using both the fully labeled 3D data and weakly labeled 2D
data. Our weakly supervised method could relieve the lack of training
data with 3D joint annotation in applications, and also inspire related re-
searches such as human pose/shape recovery, in which full supervisions
are not available or insufficient. Our experiments on the benchmark
datasets show that our method can achieve the state-of-the-art perfor-
mance.

Though inspiring results were obtained from this research, this work
can be further improved to be an end-to-end framework. Specifically,
our algorithm failed to fulfill the end-to-end prediction task due to
the non-differentiable argmax operation in the 2D pose detection step.
Although differentiable alternative operations such as soft argmax exist,
they do not work well in our algorithm. It would be worthwhile to
find a way to make our method end-to-end in a future work. Moreover,
designing or utilizing other human pose representations would improve
the potential of our method; for example, we can use human kinematics
model with the joint angles and joint offsets and use them as the pose
regression target, which could ensure that the reconstructed human
joints are more plausible.

Our human pose estimation method can be used in several virtual
reality applications that require the human body pose. Our method
can help such applications to capture high-quality human body poses
efficiently and enable more potential interactions, such as accurate trace
tracking and fast-move tracking.
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