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Abstract

It is a conventional belief that line-based approaches perform better than point-based ones for homography estimation, as the line-
fitting is generally more noise resistant than point detection. In this note, we show that blithely using line-based estimation is a risky
business. More specifically, we show that when the image line(s) is (are) passing through or close to the origin, the line-based homo-
graphy estimation could become wildly unstable whereas the point-based estimation performs normally. To tackle this problem, a
new normalized method specially designed for line-based homography estimation is proposed and validated by extensive experiments.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Homography played an important role in visual metrol-
ogy (Criminisi et al., 1999; Criminisi, 2001; Wang et al.,
2004), camera calibration (Zhang, 2000; Triggs, 1998) and
3D reconstruction (Wang et al., 2005; Wright et al., 2006).
There are many kinds of methods for homography estima-
tion, where the direct linear transformation (DLT) (Abdel-
Aziz and Karara, 1971) is the most practical and convenient
one due to its linearity and simplicity. Under the DLT par-
adigm, either point correspondences or line correspon-
dences could be used, and in theory the line-based
estimation and the point-based estimation is equivalent. It
is widely believed, and in most cases, it is indeed true, that
the line-based estimation is better than the point-based
one in terms of noise resistance from the computational
point of view. However, we found that the performance
of the line-based homography estimation is dependent on
the chosen image coordinate system. If by chance an image
line is passing through or close to the origin of the chosen
0167-8655/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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image coordinate system, the line-based estimation will
become wildly unstable whereas the point-based estimation
still performs normally. This indicates that there exist some
specialties in line-based estimation from numerical point of
view although the underlying theory is the same with the
point-based one.

In his famous normalized 8-point algorithm for the fun-
damental matrix estimation, Hartley proposed a pre-data
normalization step to improve the conditioning of the coef-
ficient matrix (Hartley, 1997). Hartley’s data normalization
approach is specifically designed for point coordinates, a
direct copy of it for line-based homography estimation
seems inappropriate as the third coordinate of an image
line could be zero, whereas the third coordinate of an
image point in the homogenous coordinates is always equal
to 1. Based on this, we also introduce a normalization
scheme for line coordinates in this work, and the scheme
is shown effective from extensive experiments.

Of course, if many line correspondences are available in
practical applications, one or a few image lines close to the
origin is evidently not too serious for the estimation. Here
our work is particularly for those applications where the
number of line correspondences is not large due to either
the practical concern or the task imposition. For example,
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for visual metrology, the template cannot be too compli-
cated. In our case, our ‘‘ ”-type template contains only 4
pairs of parallel lines, one image line close to the origin
can bring forth gross estimation errors.

The rest of the paper is organized as follows. In Section
2, some preliminaries about homography, line-based
homography estimation and the condition number of the
measurement matrix are introduced. Then a new normal-
ized method for line-based homography estimation is pre-
sented in Section 3. Section 4 reports the experimental
results and some concluding remarks are listed in Section 5.

2. Preliminaries

2.1. Plane-to-image homography

In this work, an image point is denoted by ~m ¼ ðu; v; 1ÞT
in the homogenous coordinates and a point on space plane
by fMp ¼ ðX ; Y ; 1ÞT. Then the mapping between a point on
the space plane to its image is a 2D projective transforma-
tion, called plane-to-image homography, expressed as
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or

sem ¼ HfMp ð2Þ

Usually, H is a non-singular 3 � 3 homogenous matrix
with 8 degrees of freedom as it can only be defined mean-
ingfully up to a scale factor. The homography can be un-
iquely determined from four correspondences from space
points (no three points are collinear) to image ones.

Let L be a line on the space plane and l its corresponding
image line. From the duality principle about points and
lines as shown in (Hartley and Zisserman, 2003), the line
mapping can be expressed as

sL ¼ HTl ð3Þ

Similarly 4 line correspondences can be used to determine
the homography H. Once H is obtained, an image point
can be back-projected to the world plane via H�1, so the
distances of points on the world plane can be measured.

2.2. Line-based homography estimation under the DLT

paradigm

Estimation by the DLT is meant to get some linear con-
straints on homography H via Eq. (3) from some line cor-
respondences, and then use them to estimate H by
minimizing the total sum of algebraic errors as shown
below, see also Faugeras (1993), Hartley and Zisserman
(2003)) for more details.

Let Li = (Ai,Bi,Ci)
T

M li = (ai,bi, ci)
T(1 6 i 6 n) be a pair

of line correspondences, then 3 linear constraints in the
entries of H can be obtained as
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where h = [h11,h21,h31,h12,h22,h32,h13,h23,h33]T. Although
there are three constraints in Eq. (4), only two of them
are linearly independent. In practice, usually all the three
constraints are used to gain robustness (Agarwal et al.,
2005; Kanatani and Ohta, 1999). For all the n line corre-
spondences, the measurement matrix can be written as

U ¼ ðUT
1 ;U

T
2 ; . . . ;UT

n Þ
T ð5Þ

Then the least-squares solution for h is the singular vector
corresponding to the smallest singular value of U.

2.3. The condition number of the measurement matrix

The condition number of the measurement matrix is an
important factor in the analysis of the stability of linear
problems (Horn and Johnson, 1990). If the singular values
of the measurement matrix U are d1,d2, . . . ,d9(d1 P d2

P � � �P d9), then the condition number of the matrix U
is defined as

k ¼ d1=d8 ð6Þ

It is generally observed that if the measurement data are
noise-free, the larger the condition number of the measure-
ment matrix is, the more sensitive to noise the method is. In
his famous work (Hartley, 1997), Hartley showed that the
main reason for the poor conditioning of the measurement
matrix is lack of homogeneity in the data coordinates. By
pre-normalizing the image coordinates to reduce the condi-
tion number, the estimation robustness can be substantially
increased.
3. A new normalized method for line-based homography

estimation

3.1. A case of instability

In our application on visual metrology, we find that for
a given quadruplet of line correspondences, if one or more
image lines are passing through or close to the origin, the
homography estimation by the DLT becomes wildly unsta-
ble, and at this time, the condition number of the measure-
ment matrix is very large too. We think this instability is
chiefly due to the ill-conditioning of the measurement
matrix. Here is a theoretical analysis:

In our work, an image line is defined under the normal
parametrization as sinh � u � cosh � v + q = 0, where h is
the including angle between the line and the positive u-axis,
q is the distance of the line from the origin. Let the coordi-
nates of a line be li = (ai,bi,ci)

T, thus a2
i þ b2

i ¼ 1; q P 0.
When a line passes through the origin, its third coordinate
ci = 0. In this case, Hartley’s normalization method for



Fig. 1. The simulated image of the reference template.
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image point coordinates is longer usable. Although Hartley
also considered the case of normalizing points at (or near)
infinity, he did not elaborate on it. We should find a new
normalization method for line coordinates.

When there exist one or more image lines passing
through or close to the origin, if we keep a2

i þ b2
i ¼ 1, the

variety of the third coordinate ci generally much larger
than ai and bi. Then according to Hartley’s reasoning, the
condition number of the corresponding measurement
matrix will be large. On the other hand, if we set
a2

i þ b2
i þ c2

i ¼ 1, the situation cannot be improved much,
the condition number of the measurement matrix is still
too large. Here is a specific example.

As shown in Fig. 1, the quadrilateral is the projected
image of our simulated ‘‘ ”-type reference template for
visual metrology, the origin of the image coordinate system
is at the upper-left corner. The distance from the origin to
the line L2 is much smaller (close to 0) than those of other 3
lines. In order to investigate the relative space distribution
of the four labeled lines, we define that the coordinates’
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Fig. 2. The relative space d
Frobenius norm of the lines in Fig. 2 is 1. As shown in
Fig. 2a, since c2� ci (i = 1,3,4), and the corresponding
point of the line L2 in the (a,b,c) parameter space is far sep-
arated from those of other lines. Moreover, the corre-
sponding points of the other three lines are much
congregated. Then according to Hartley’s theory, the prob-
lem is bad conditioned and the estimation will be sensitive
to noise.
3.2. A new normalization

Inspired by Hartley’s point-based normalization
approach, we present a new normalization approach specially
designed for line coordinates (Hartley, 1997). Similarly, a sim-
ple transformation is performed before formulating the linear
equations, and then the condition number of the measure-
ment matrix is improved. Our experimental results show that
the normalization could lead to a substantial increase in the
stability of the line-based homography estimation.

Based on the above analysis, here is our new normaliza-
tion for line-based estimation:

Given a set of image lines li = (ai,bi,ci)
T (i = 1,2,3, . . . ,n),

set t1 ¼
Pn

i¼1ai; t2 ¼
Pn

i¼1bi; t3 ¼
Pn

i¼1ci. Construct the
transformation T1 as follows:

T1 ¼
1 0 �t1=t3

0 1 �t2=t3
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Then after the transformation of l0i ¼ T1 � li, the trans-
formed line coordinates l0i ¼ ða0i; b

0
i; c
0
iÞ

T satisfy
Pn

i¼1a0i ¼ 0
and

Pn
i¼1b0i ¼ 0. Here the centroid of the transformed line

coordinates lies on the c-axis. That is to say, the transfor-
mation T1 makes the relative distribution of the line coor-
dinates more homogenous about the c-axis in the O � abc

coordinate system.
−0.5

0

0.5

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

c

a
b

L2

L3

L1

L4

istribution of the line.



2

2.5
x 105

DLT
Normalized

H. Zeng et al. / Pattern Recognition Letters 29 (2008) 1236–1244 1239
Let s ¼
Pn

i¼1
ða02i þb02i Þ

2�
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, and construct the transforma-
tion T2 as
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1 0 0

0 1 0

0 0 s
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Now, let us have a note on the ‘‘worst” scenario. If all
c0i ¼ 0, all lines are passing through the origin and
s ?1. From the principle of projective geometry, we
can see that this is a degenerate configuration and we can-
not determine a unique homography from such line corre-
spondences. In our work, we use a ‘‘ ”-type reference
template, this dangerous case is impossible to arise.

Then after the transformation of l00i ¼ T2 � l0i, the line
coordinates l00i ¼ ða00i ; b00i ; c00i Þ

T satisfy
Pn

i¼1ða002i þ b002i Þ ¼
2
Pn

i¼1c002i . Let the root mean square distance from the
transformed line coordinates to plane Oab be d1 and let
the root mean square distance to c-axis be d2, then the ratio
of d1 to d2 is

ffiffiffi
2
p

. This makes the relative distribution of the
line coordinates more homogenous in the abc space.

Finally, set l00i ¼ l00i =kl00i k, then the transformed line coor-
dinates lie on the sphere centered at the origin and of radius
1.

After the above normalization, the relative distribution
of the four simulated image lines is shown in Fig. 2b. We
can see that our proposed normalization can improve the
homogeneity of the line coordinates distribution, hence
an improvement in the stability of the estimation.

Here is a summary of our normalization steps:
Given n P 4 space to image line correspondences

{Li M li}.

(1) Construct two transformations T1 and T2 to normal-
ize the image lines using Eqs. (7) and (8).

(2) Construct two transformations T01 and T02 to normal-
ize the space lines in the same way.

(3) Transform the line coordinates using l00i ¼ T2T1 � li

and L00i ¼ T02T01 � Li, and set their Frobenius norms
equal to 1. Thus we can obtain a set of new line cor-
respondences fL00i $ l00i g and use the DLT method to
estimate the homography H0.

(4) Denormalization. The homography for the original
coordinates is obtained as H ¼ TT

1 TT
2 H0T0�T

1 T0�T
2 .
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Fig. 3. A comparison of the condition number of the two method.
4. Experiments

4.1. Experiments with simulated data

The simulation experiments aim at testing the robust-
ness and accuracy of our normalized method, and compar-
ing it with the DLT method. In order to ensure the
comparability of the two methods, all tests are taken under
the same camera parameters and simulation data. During
the simulations, the camera’s setup is: fu = 1200, fv =
1000, a = 0.1, u0 = 512, v0 = 384. The image resolution is
of 1024 � 768 pixels. The camera extrinsic parameters
are: rotation axis r = (2,1,4)T, translation T = (20,20,
260)T and the rotation angle is set respectively in each test.

For both methods, we generate a ‘‘ ”-type reference
template, and equidistantly select 100 points on each side
of the template. The 100 image points on each side are fit-
ted to a line via a least-squares algorithm. Then the homo-
graphy between the reference plane and the image plane
can be estimated and an image point can be mapped to
the Euclidean space. At last, the distance between two
space points can be determined. In order to provide more
statistically meaningful results, for each test, we randomly
select 100 pairs of space points and use their corresponding
image points to estimate their distances. Define the relative
measurement error as

Erela ¼
jDt � Dej

Dt

� 100

� �
% ð9Þ

where Dt is the true distance, De is the estimated distance.
In each test, we use the averaged absolute error and the
averaged relative error of the 100 computed distances as
the final results.

At first, we test the robustness of the new normalized
method by comparing the condition number of the two
methods without adding image noise in the simulated data.
As described in Section 2.3, the smaller the condition num-
ber of the measurement matrix is, the more robust the
method is. For each simulation, we randomly select a rota-
tion angle in [�100�, 100�]. About 100 independent trials
are done and the results are shown in Fig. 3. We can see
that the condition number of the DLT method is always
larger than that of our normalized method. That is to
say, our normalized method is always more robust than
the DLT method.

Secondly, we investigate the influences of the camera
rotation angle on the two methods. Gaussian noise with
mean 0 and standard deviation 1.5 is added to the coordi-
nates of the simulated image points. We vary the rotation
angle a from �100� to 100�. For each angle, we repeat
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100 times and calculate the absolute measurement error,
the mean and the variance of the condition number. The
averaged results of the absolute measurement errors are
shown in Fig. 4a, and the mean and the variance of the
condition number are shown in Fig. 4b and c. We can
see that for the DLT method, some gross estimation errors
appear under some special camera poses, and the variance
of the corresponding condition number is large. From the
distribution of the image lines we can find that, for these
camera poses with larger measurement errors, there always
exist one or more image lines passing through or close to
the origin of the image coordinate system. Fig. 1 is the sim-
ulated image of the reference template with a = 39�. From
Fig. 4 we can see that this rotation angle falls in the band of
the angles that manifest large errors.

Then, we investigate the influences of the image noise
level on the two methods. Gaussian noise with mean 0
and standard deviation ranging from 0 to 5 pixels is added
to the coordinates of the image points. At each noise level,
100 runs are done. Figs. 5a and b are the results of the
absolute measurement error and the relative measurement
error. Figs. 5c and d are the results of the mean and the
variance of the condition number. We can see that both
−100 −50 0
0

100

200

300

400

500

600

700

Rotation An

Ab
so

lu
te

 E
rro

r

−100 −50 0 50 100
0

2

4

6

8

10

12

14

16

18
x 104

Rotation Angle(degree)

Th
e 

M
ea

n 
of

 C
on

di
tio

n 
N

um
be

r

DLT
Normalized

a

b c

Fig. 4. A comparison of the absolute measurement error, the condition numb
error (b) the mean of the condition number (c) the variance of the condition
the absolute errors and the relative errors increase roughly
linearly with the noise level. The results of our normalized
method are always better than those by the DLT method.
When the noise level of the simulated data is not zero, the
condition number’ s mean and the variance of the DLT
method are always larger than those of our normalized
method. Hence when there is noise present in the image,
our normalized method is more noise resistant than the
DLT method.

Finally, we investigate whether by simply translating the
origin to somewhere that no line is close to it could handle
the issue. The root cause of the unstability is partly due to
the choice of the image system. An apparent way to solve
the problem is to fix the center of the image quadrilateral
as the origin of the image system, as shown in Fig. 6. So
we first compute the image points of the reference template
under the translated image system. Then we do the homog-
raphy estimation using the DLT method. Finally the dis-
tance between two space points can be calculated by the
estimated homography and their corresponding translated
image coordinates. We name such a procedure as ‘‘Trans-
DLT” method, and compare it with our normalized
method under different camera rotation angles. Gaussian
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Fig. 5. A comparison of the measurement’s absolute error and relative error, the condition number’s mean and variance of the two methods.
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noise with mean 0 and standard deviation 1.5 is added to
the simulated image points. For each angle, we repeat
100 times and the averaged results are shown in Fig. 7.
We can see that for the ‘‘TransDLT” method, the mean
and the variance of the condition number is larger under
some camera poses, and the corresponding estimation
errors are larger too. In Comparison with Fig. 4, we can
conclude that the ‘‘TransDLT” method is better than the
DLT method, but it is not so good as our normalized
method. Although the simple translation can improve the
distribution of the data coordinates, it cannot achieve the
similar stability of the ‘‘normalized” method. From
Fig. 7b and c, we can see that the simple translation cannot
change the ill conditioning of the problem thoroughly.

A line can be parameterized with different forms and the
normalization on different line parameterizations seems
differ. So we carry out the experiments on two popular line
parameterizations. For line li = (ai,bi,ci)

T, the ‘‘DLT” and
‘‘Normalized” methods use the constraint a2

i þ b2
i ¼ 1, and

the ‘‘DLT2” and ‘‘Normalized2” methods use the con-
straint a2

i þ b2
i þ c2

i ¼ 1. Fig. 8 is the results of the four
methods. We can see that the ‘‘DLT” method is better than
the ‘‘DLT2” method and the performance of the ‘‘Normal-
ized” method is comparable to that of the ‘‘Normalized2”

method. Hence different line parameterizations do have
some influence on the results of the DLT method, but there
has no noticeable influence on our normalized method.
4.2. Experiments with real image

In real image test, images are taken by a Nikon Coolpix
990 digital camera with the resolution of 1024 � 768. Fig. 9
shows two images of the test set, which are taken in our lab
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Fig. 7. A comparison of the ‘‘TransDLT” method and our normalized method.
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with the ‘‘ ”-type reference template laid on the ground.
Fig. 10 shows two images taken in a parking. During the
test, we take the template lines as 3D space lines and their
space coordinates are known. To obtain the corresponding
image lines, we first use canny edge detector to detect the
edge points. Then we use a least-squares technique to fit
the detected edge points into lines. Finally, we use the
DLT method and our normalized method to measure the
distances on the ground. The comparative results are
shown in Tables 1 and 2, where the true distances are taken
manually on the spot. From the test results of Figs. 9a and
10a, we can see that the two methods are of comparable
accuracy and the normalized method performs slightly bet-
ter than the DLT method. From the test results of Figs. 9b
and 10b, we can see that the accuracy of the normalized
method is far better than the DLT method. The reason is



Fig. 9. Two test images taken in our lab.

Fig. 10. Two test images taken in the parking.

Table 1
A comparison of the two methods with real images in Fig. 6

Line segments

S1 S2 S3 S4 S5 S6 S7 S8

True distance (cm) 60 60 84.85 84.85 60 60 84.85 84.85

DLT method

Estimated value (cm) 59.44 59.56 84.17 84.41 57.07 57.81 82.22 82.79
Absolute error (cm) 0.56 0.44 0.68 0.44 2.93 2.19 2.63 2.06
Relative error (%) 0.93 0.73 0.80 0.52 4.88 3.65 3.10 2.43

Normalized method

Estimated value (cm) 59.71 59.80 84.31 84.50 59.66 59.41 84.82 84.17
Absolute error (cm) 0.29 0.20 0.54 0.35 0.34 0.59 0.03 0.68
Relative error (%) 0.48 0.33 0.64 0.41 0.57 0.98 0.04 0.80

Table 2
A comparison of the two methods with real images in Fig. 7

Line segments

P1P2 P2P3 P3P4 P4P5 P1P2 P2P3 P3P4 P4P5

True distance (cm) 94 126.5 87.5 147.5 94 126.5 87.5 147.5

DLT method

Estimated value (cm) 99.38 128.52 87.49 145.51 88.65 139.65 84.38 165.72
Absolute error (cm) 5.38 2.02 0.01 1.99 5.35 13.15 3.12 18.22
Relative error (%) 5.72 1.60 0.01 1.35 5.69 10.40 3.57 12.35

Normalized method

Estimated value (cm) 96.48 127.95 87.09 146.02 90.86 130.41 86.35 152.21
Absolute error (cm) 2.48 1.45 0.41 1.48 3.14 3.91 1.15 4.71
Relative error (%) 2.64 1.15 0.47 1.00 3.34 3.09 1.31 3.19
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that there exists at least one template line close to the origin
of the image coordinate system in both Figs. 9b and 10b,
and Figs. 9a and 10a do not contain such lines.
5. Conclusion

In this paper, we present a new normalized method for
line-based homography estimation and apply it to visual
metrology. Although the estimation based on line corre-
spondences is considered as a dual of the one based on
point correspondences, or is regarded projectively equiva-
lent, we find from the numerical point of view, the estima-
tion based on line correspondences has its own specialties,
and these specialties must be accounted for robustness con-
cern. For example, we find that if an image is close to the
origin, the case is numerically a critical one. In addition,
the Hartley’s normalization seems to be designed for point
bases estimation (in fact, unlike a pair of corresponding
points, a pair of corresponding lines across two images
does not give rise any constraints on fundamental matrix),
it cannot be directly used for our line-based homography
estimation. Simulations and real image tests show our pro-
posed new normalization method can adequately remove
the risky cases, and can significantly increase the measure-
ment accuracy and robustness.
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