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a b s t r a c t

In camera calibration, focal length is the most important parameter to be estimated, while other param-
eters can be obtained by prior information about scene or system configuration. In this paper, we present
a polynomial constraint on the effective focal length with the condition that all the other parameters are
known. The polynomial degree is 4 for paracatadioptric cameras and 16 for other catadioptric cameras.
However, if the skew is 0 or the ratio between the skew and effective focal length is known, the constraint
becomes a linear one or a polynomial one with degree 4 on the effective focal length square for paracata-
dioptric cameras and other catadioptric cameras, respectively. Based on this constraint, we propose a
simple method for estimation of the effective focal length of central catadioptric cameras. Unlike many
approaches using lines in literature, the proposed method needs no conic fitting of line images, which
is error-prone and highly affects the calibration accuracy. It is easy to implement, and only a single view
of one space line is enough with no other space information needed. Experiments on simulated and real
data show this method is robust and effective.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

In many computer vision applications, such as robot navigation,
surveillance, teleconferencing, and virtual reality etc, it would be
convenient if the imaging system could have a large field of view
(FOV). However, a conventional camera has a very limited FOV.
One effective way to enhance the FOV is to combine mirrors with
a conventional camera, which is called a catadioptric imaging sys-
tem (Yagi and Yachida, 2004; Swaminathan et al., 2006; Baker and
Nayer, 1999). In catadioptric systems, a single effective viewpoint
is highly desirable due to its superior and useful geometric proper-
ties (Baker and Nayer, 1999; Geyer and Daniilidis, 2001). A catadi-
optric system with a unique viewpoint is called a central
catadioptric system. The complete class of central catadioptric sys-
tems is presented by Baker and Nayer (1999). They introduce that a
central catadioptric system can be built by setting a parabolic mir-
ror in front of an orthographic camera, or a hyperbolic, elliptical,
planar mirror in front of a perspective camera, where the single
viewpoint constraint can be fulfilled via a careful alignment that
the camera is located at the mirror focus. Now the calibration of
central catadioptric cameras has been an active research field (Bar-
reto and Araujo, 2005; Geyer and Daniilidis, 1999, 2002; Ying and
ll rights reserved.

: +86 10 58808306.
Hu, 2004; Wu and Hu, 2005; Wu et al., 2008; Deng et al., 2007;
Ying and Zha, 2008).

Some methods use images of known scene points to calibrate
central catadioptric cameras. For example, Wu and Hu (2005) cal-
ibrate the camera principal point accurately from 1D space points,
Scaramuzza et al. (2006) and Kannala et al., 2008 use a 2D calibra-
tion pattern, Sturm and Ramalingam (2004) use 2D or 3D space
points to calibrate a generic kind of omnidirectional cameras. An-
other kind of methods (Ramalingam et al., 2005; Kang, 2000) is
self-calibration using point correspondences across multiple views
without requiring any scene information. For example, Ramalin-
gam et al. (2005) calibrate generic central cameras by specific cam-
era motions.

Lines are common geometric entities in the man-made scenes,
and are widely used in camera calibration (Barreto and Araujo,
2005; Geyer and Daniilidis, 1999, 2002; Ying and Hu, 2004; Wu
and Hu, 2005; Wu et al., 2008; Deng et al., 2007; Duan et al.,
2008). Geyer and Daniilidis use a single view of two sets of parallel
lines (Geyer and Daniilidis, 1999) or a single view of three scene
lines (Geyer and Daniilidis, 2002) to calibrate a parabolic catadiop-
tric camera. They also propose a unified sphere model (Geyer and
Daniilidis, 2001) for describing the imaging process of central cata-
dioptric cameras, under which some algorithms (Ying and Hu,
2004; Wu and Hu, 2005; Wu et al., 2008; Deng et al., 2007; Ying
and Zha, 2008) are proposed for calibrating central catadioptric
cameras. Ying and Hu (2004) apply some geometric invariants of
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Fig. 1. The generalized imaging model for central catadioptric cameras.
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lines or spheres to calibrate central catadioptric cameras. Barreto
and Araujo (2005) study the projective invariant properties of cata-
dioptric images of space lines and show that any central catadiop-
tric camera can be fully calibrated from an image of three or more
space lines. Wu et al. (2008) present a group of linear constraints
on the catadioptric parameters from the catadioptric projections
of spatial lines. Ying and Zha (2008) present some identical projec-
tive geometric properties of central catadioptric images of lines
and spheres, and apply these properties to calibration. Since a
space line is projected onto a conic in a central catadioptric image,
nearly all these approaches need conic fitting of line images, and
the calibration accuracy highly depends on the accuracy of the
conic fitting. In general, only a small segment of the conic is visible
in the catadioptric image due to partial occlusion. This makes the
conic estimation error-prone. Although Barreto and Araujo
(2006) present an effective method for conic fitting of line images
in paracatadioptric systems, it is still unsolved in other systems
such as hypercatadioptric system. Wu et al. (2006) present a cali-
bration method with the principal point known, which needs no
conic fitting of line images, but it is only for paracatadioptric
cameras.

In camera calibration, focal length is the most important param-
eter to be estimated, while other parameters can be obtained by
prior information about scene or system configuration. For exam-
ple, Sturm et al. (2005) calibrate the focal length of a traditional
camera from two views while keeping the focal length fixed during
the motion of the camera, in which they assume all other camera
parameters are known. The contribution of this paper is as follows:
Firstly, we obtain a polynomial constraint on the effective focal
length from a property that the projections of any three collinear
points on the viewing sphere should be coplanar with the view
sphere center. Secondly, based on this constraint, this paper pro-
poses a robust algorithm for calibration of the effective focal length
of central catadioptric cameras. The algorithm does not need conic
fitting of line images, is easy to implement, and only a single view
of one space line is enough with no other space information
needed.

Section 2 reviews the unified imaging model given by Geyer and
Daniilidis. Section 3 derives the constraints on camera parameters.
Section 4 describes the proposed algorithm. Experimental results
are reported in Section 5, and followed are some conclusions in
Section 6.

2. A generalized imaging model for central catadioptric camera

The imaging model proposed by Geyer and Daniilidis (2001) is
widely used in central catadioptric camera calibration due to its
simplicity and generality. They prove that the central catadioptric
imaging process is equivalent to the following two-step mapping
by a view sphere (see Fig. 1.):

Firstly, under the viewing sphere coordinate system O-xyz with
O being the unit sphere center, a 3D point X = [x, y, z]T is projected
to a point Xs on the unit sphere through the viewpoint O by Xs = [x/
r, y/r, z/r]T, r = ||X||, || || denotes the norm of vector in it;Secondly,
the point Xs on the viewing sphere is perspectively projected to a
point m on the catadioptric image plane P by a virtual pinhole
camera through the perspective center Oc.In this camera system,
there is only a translation between the pinhole coordinate system
Oc-xcyczc and the viewing sphere coordinate system O-xyz, and the
optical axes of the virtual pinhole camera is the line going through
the viewpoints O and Oc.Hence, the image plane is perpendicular to
the line OcO, and its principal point is the intersection,
p = [u0, v0, 1]T, of the line OcO with the image plane P. The distance
n from point O to Oc is called the mirror parameter, which deter-
mines the mirror type used in a central catadioptric camera. The
mirror is a paraboloid if n = 1, an ellipsoid or a hyperboloid if
0 < n < 1, and a plane if n = 0.The details can be found in (Geyer
and Daniilidis, 2001). In this paper, we assume 0 < n 6 1, i.e. do
not consider the case of plane mirror.

Let the intrinsic matrix of the virtual pinhole camera be

K ¼
rf s u0

0 f v0

0 0 1

2
64

3
75; ð1Þ

where f is the effective focal length; r is the aspect ratio;
p = [u0, v0, 1]T is the principal point and s the parameter describing
the skew of the two image axes. Then the catadioptric image of a 3D
space point X is

m ¼ kK½I; ne�
X=kXk

1

� �
¼ kKðX=kXk þ neÞ; ð2Þ

where k is a scalar, I is an identical matrix, e = [0, 0, 1]T, and ne is the
coordinate of the sphere center, which denotes the translation from
viewing sphere coordinate system O-xyz to the pinhole coordinate
system Oc-xcyczc. In this imaging system, [f, r, s, u0, v0, n] is the cam-
era intrinsic parameter.

3. Constraints on camera parameters

In (Wu et al., 2008), the authors have derived the projection of a
3D space point as follows:

Proposition 1. Let m be the catadioptric image of a space point X.
Then under the pinhole coordinate system Oc-xcyczc, the projection
of point X on the viewing sphere can be expressed as:

Xs ¼
n 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg

p� �
g

K�1m: ð3Þ

In the case of paraboloid mirror, i.e. n = 1,

Xs ¼ 2
g

K�1m; ð4Þ

where s = (1 � n2)/n2, x ¼ K�T K�1 is the image of absolute conic
(IAC) of the virtual pinhole camera, and g ¼ mTxm is the algebraic
distance from the image point to IAC.

Based on Proposition 1, we have the following constraint on all
the catadioptric parameters:
Proposition 2.. Let {mj : j = 1, 2, 3} be the catadioptric image of
three collinear space points{Xj : j = 1, 2, 3}. Then,
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/ðs;xÞ, det 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg1

p� �
m1 � g1p; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg2

p� �
m2 � g2p;

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg3

p� �
m3 � g3p

i
¼ 0; ð5Þ

where det denotes determinant of a matrix, gj ¼ mT
j xmj; j ¼ 1;2;3,

x¼K�T K�1

¼ 1
r2f 4

f 2 �sf sv0f �u0f 2

�sf s2þ r2f 2 su0f � s2v0�v0r2f 2

sv0f �u0f 2 su0f � s2v0�v0r2f 2 ðsv0�u0f Þ2þ r2v2
0f 2þ r2f 4

0
@

1
A:
Proof. According to the unified sphere model, the projections of
three collinear space points on the viewing sphere,
fXs

j : j ¼ 1;2;3g; should be on a great circle of the sphere. That is,
the three unit vectors OXs

1

		!
;OXs

2

		!
;OXs

3

		!
are coplanar. Thus we have

det Xs
1 � O;Xs

2 � O;Xs
3 � O


 �
¼ 0: ð6Þ

By Eq. (3), we have

Xs
j � O ¼

nð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sgj

q
Þ

gj
K�1mj � ne

¼ nK�1
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sgj

q
Þ

gj
mj � Ke

0
@

1
A

¼ nK�1

gj
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sgj

q� �
mj � gjp

� �
: ð7Þ

Since det K�1 – 0, we obtain

det Xs
1 � O;Xs

2 � O;Xs
3 � O


 �
¼ n3 det K�1

g1g2g3
det 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg1

p� �
m1 � g1p;

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg2

p� �
m2 � g2p;

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg3

p� �
m3 � g3p

i
¼ 0

/ det 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg1

p� �
m1 � g1p;

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg2

p� �
m2 � g2p;

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg3

p� �
m3 � g3p

i
¼ 0: ð8Þ

Hence, the constraint holds. h

Let

Tp ¼
1 0 �u0

0 1 �v0

0 0 1

2
64

3
75; K̂ ¼ TpK ¼

rf s 0
0 f 0
0 0 1

2
64

3
75;

then m̂ ¼ Tpm is a transformation translating the origin of the im-
age plane to principal point p.From Eq. (5), we have

det Tp
� �

det 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg1

p� �
m1 � g1p; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg2

p� �
m2

h
� g2p; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg3

p� �
m3 � g3p

i
¼ det Tp ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg1

p
Þm1 � g1p; ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg2

p
Þm2

h�
� g2p; ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg3

p
Þm3 � g3p

i�
¼ det 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg1

p� �
m̂1 � g1e; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg2

p� �
m̂2

h
� g2e; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg3

p� �
m̂3 � g3e

i
¼ 0: ð9Þ

Let m̂i ¼ ðxi; yi;1Þ
T
; then

gi ¼ mT
i xmi ¼ m̂T

i T�T
p xT�1

p m̂i

¼ r2f 4 þ ðx2
i þ y2

i r2Þf 2 � 2sxiyif þ y2
i s2

r2f 4 :
Let

D1 ¼ det
x1 x2

y1 y2

� �
;

D2 ¼ det
x1 x3

y1 y3

� �
;

D3 ¼ det
x2 x3

y2 y3

� �
:

ð10Þ

When s = 0, i.e. in the case of para-catadioptric camera, from Eq. (9),
we have:

det½2m̂1 � g1e;2m̂2 � g2e;2m̂3 � g3e� ¼ D3g1 � D2g2 þ D1g3

� 2ðD3 � D2 þ D1Þ ¼ 0

1ðD3 � D2 þ D1Þr2f 4 � ðD3x2
1 � D2x2

2 þ D1x2
3Þf 2

� ðD3y2
1 � D2y2

2 þ D1y2
3Þr2f 2 þ 2ðD3x1y1 � D2x2y2 þ D1x3y3Þsf

� ðD3y2
1 � D2y2

2 þ D1y2
3Þs2 ¼ 0: ð11Þ

When all other parameters are known, Eq. (11) gives a polynomial
constraint with degree 4 on the effective focal length, and a linear
constraint on the effective focal length square if s = 0 or s = df with
d being a constant. So, given the image points of any three collinear
space points, the effective focal length can be determined directly
by solving the Eq. (11).

Let x̂ ¼ T�T
p xT�1

p ¼ K̂�TK̂�1 ¼
x̂11 x̂21 0
x̂12 x̂22 0

0 0 1

0
@

1
A; x̂12 ¼ x̂21.

From Eq. (11), we get

ðD3x2
1 � D2x2

2 þ D1x2
3Þx̂11 þ ðD3y2

1 � D2y2
2 þ D1y2

3Þx̂22

þ 2ðD3x1y1 � D2x2y2 þ D1x3y3Þx̂21 ¼ D3 � D2 þ D1 ð12Þ

Apparently, Eq. (12) is a linear constraint on the unknown items of
the matrix x̂ So, given three triples of image points of collinear
space points, with the principal point known, we can linearly esti-
mate the matrix x̂. Then the effective focal length, the aspect ratio
and the skew can be obtained by matrix decomposition for the ma-
trix x̂. In fact, the constraint in Eq. (12) is equivalent to the con-
straint used in (Wu et al., 2006. The difference is that the
constraint here is deduced from the projections of three collinear
space points on the viewing sphere, while the one in (Wu et al.,
2006) is from a rectified perspective image.

When s–0, i.e. in the case of ellipsoid or hyperboloid mirror, by
Eq. (9), we have:

det ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg1

p
Þm̂1 � g1e; ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg2

p
Þm̂2 � g2e;

h
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg3

p
Þm̂3 � g3e

i
¼ 0

/ det m̂1 þ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg1

p
s e; m̂2 �

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg2

p
s e;

"

m̂3 �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sg3

p
s e

#
¼ 0

/ det

x1 x2 x3

y1 y2 y3

ð1þ sÞrf 2 �
ffiffiffiffiffi
k1
p

ð1þ sÞrf 2 �
ffiffiffiffiffi
k2
p

ð1þ sÞrf 2 �
ffiffiffiffiffi
k3
p

2
64

3
75 ¼ 0

/ D3

ffiffiffiffiffi
k1

p
� D2

ffiffiffiffiffi
k2

p
þ D1

ffiffiffiffiffi
k3

p
� ð1þ sÞðD3 � D2 þ D1Þrf 2 ¼ 0

ð13Þ

where ki ¼ ð1þ sÞr2f 4 þ sðx2
i þ y2

i r2Þf 2 � 2ssxiyif þ sy2
i s2. It will be-

come a polynomial constraint with degree 16 on the effective focal
length by removing the radical sign, which can be realized by using
the symbolic computation function of the software MAPLE. If s ¼ 0
or s ¼ df with d being a constant, it will become a polynomial con-
straint with degree 4 on the effective focal length square. See con-
crete forms in Appendix A.



Fig. 2. The mirror boundary and its image.

F. Duan et al. / Pattern Recognition Letters 33 (2012) 646–653 649
4. Calibrating algorithm

Generally, there are totally six parameters [f, r, s, u0, v0, n] to be
determined in central catadioptric camera calibration. However,
the focal length is the most important parameter to be estimated,
while other parameters can be obtained by prior information about
scene or system configuration. For example, due to highly ad-
vanced manufacturing technology, the principal point can be set
as the image center or determined from the bounding ellipse of
the catadioptric image (Kang, 2000), the skew can be considered
as zero, the aspect ratio as one and the mirror parameter can be
computed from the eccentricity of the mirror. Here we only esti-
mate the effective focal length with the assumption that all the
other parameters are known.

Previous approaches using lines have to fit conics to line
images. However, it is very difficult to get the conics correctly even
for a lower noise level due to partial occlusions. Thus the con-
straints derived from the conics are largely biased. Instead we
use the constraint of Eq. (11) or Eq. (13) from three image points
on a line image. For estimation of the effective focal length f, a tri-
ple of image points on one line image is enough, and more triples
can improve the calculation stability.
0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

Fig. 3. Bounding ellipse and the used line image.
4.1. Algorithm implementation

Given the catadioptric image of a space line, and denote the de-
tected image point set of the space line as D. Assume all other
parameters are known, the estimation algorithm for the effective
focal length is as follows:

Step 1. On the line image, randomly choose M (M P 1) triples of
image points, and establish a constraint Eqs. (11), (13) using
each triple of image points.
Step 2. Get one estimate of the effective focal length from each
constraint equation, and totally M estimates are obtained.
Step 3. Sort the M estimates, and discard k (0 6 k < M=2) infe-
rior estimates on the head and tail respectively.
Step 4. For each of the reserved estimates, compute a projection
set Q of the image point set D on the viewing sphere using Eq.
(3), and determine a plane through the viewing sphere center O
and the projection set Q.
Step 5. Compute a distance sum from the points of each projec-
tion set Q to its corresponding plane determined in Step 4, and
choose the estimate corresponding to the least distance sum as
the final output.

Remark 1. For improving calculation stability, the selected three
image points in Step 1 should be scattered on the line image. Here
we use distance measure to reject the bad sampling. In Step 2,
according to the fundamental theorem of algebra, one polynomial
constraint equation with degree d has d complex roots. However,
only one root is valid since the effective focal length is unique for
a specific image. We find in experiments that other real roots are
very close to zero or negative.

Remark 2. This algorithm is similar to RANSAC (Fischler and Bol-
les, 1981), so the sampling number M can be decided by the tech-
nique in RANSAC. Since the sampling is in a random way, the
estimate of the effective focal length should be in a normal distri-
bution with the mean value being optimal. Step 3 is optional, and
discarding 2k estimates is to accelerate this algorithm. The accu-
racy of the algorithm will hardly be affected when excluding Step
3. In our implementation, M is 50, and k is 20.

Remark 3. In Step 5, assume that the unit normal vector of the
plane is n and the projection set
Q ¼ fXs
i ; i ¼ 1;2; . . . ;mg:

We can build the following vector equation:

An ¼ 0 with knk ¼ 1; ð14Þ

where A ¼ ½Xs
1 � O;Xs

2 � O; . . . ;Xs
m � O�T . The normal vector n can be

solved in the least square sense by using SVD method, and the
distance sum from the projection set to the plane in Step 5 is equal
to the minimal singular value.
4.2. Calibration using multiple lines

In real applications, we can detect more than one line image be-
cause usually there are many space lines in real scenes. Since each
line image has different partial occlusion and noise level, the result
estimated from each line is different. In order to improve the esti-
mation accuracy, we suggest calibration using multiple lines,
where the above algorithm is performed respectively for each line
image. However, there is a minor revision on the algorithm in each
trail as follows: Firstly, in Step 4, the projections on the viewing
sphere are computed not for a single space line but for all space
lines, and not a plane but all the planes corresponding to each



Fig. 4b. The rectified paracatdioptric image by the proposed algorithm.

Fig. 5a. The used lines and the mirror boundary with hypercatadioptric camera.

650 F. Duan et al. / Pattern Recognition Letters 33 (2012) 646–653
space line are determined from the viewing sphere center O and
their corresponding projections; Secondly, in Step 5, the distance
sum is computed from the projections, which belong to not a single
but all the space lines, to their corresponding plane.

4.3. Other parameters determination

In fact, since the eccentricity of the mirror is usually known, and
is very accurate, the mirror parameter n can be obtained from the
eccentricity e of the mirror as (Geyer and Daniilidis, 2001):

n ¼ 2e
1þ e2 ; ð15Þ

Here, we mainly discuss the determination of other four param-
eters [r, s, u0, v0] from the bounding ellipse of the catadioptric
image.

In central catadioptric cameras, the mirror boundary is a circle,
and is projected to an ellipse by the traditional camera, which is
called the bounding ellipse. Ideally, the optical axis of the tradi-
tional camera is perpendicular to the plane containing the circle
and goes through the center of the circle, so center of the bounding
ellipse is the principal point. Generally, unlike the catadioptric im-
age of a space line, the bounding ellipse is a whole big conic (see
Figs. 4a and 5a), so it can be fitted well using existing techniques
(Fitzgibbon et al., 1999). In (Ying and Hu, 2004; Kang, 2000), partial
intrinsic parameters of the camera can be determined from the
bounding ellipse of the catadioptric image. Assume the bounding
ellipse is estimated as

ax2 þ 2bxyþ cy2 þ 2dxþ 2eyþ h ¼ 0: ð16Þ

The authors of Ying and Hu (2004) give the following estimation:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b2

a2 þ c
a

q
s
f ¼ � b

a

u0 ¼ be�cd
ac�b2

v0 ¼ bd�ae
ac�b2

8>>>>>><
>>>>>>:

ð17Þ

In the following, we analyze the sensitivity of the estimation to sys-
tem configuration and image noises.In the generalized imaging
model (see Fig. 2), the optical axes of the virtual pinhole camera
is the line going through the viewpoints O and Oc, the mirror
boundary of the catadioptric camera corresponds to a little circle
vertical to the line OOc, which is decided by field of view (FOV) of
the central catadioptric camera, and there is only a translation be-
tween the pinhole coordinate system Oc-xcyczc and sphere coordi-
nate system O-xyz. In real configurations, the optical axes maybe
Fig. 4a. The used lines and the mirror boundary with paracatadioptric camera.
slightly deviate from the line OOc, that is, a small rotation between
the two coordinate systems exists. Let the rotation be R, then the
catadioptric image of a 3D space point X becomes

m ¼ kK ½R; ne�
X=kXk

1

� �
: ð18Þ

Next we analyze the effect of the rotation R by simulation.
Fig. 5b. The rectified hypercatdioptric image by the proposed algorithm.
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The parameters of the simulated catadioptric camera are
(rf, f, s, u0, v0, n) = (260, 240, 1, 512, 384, 0.96), and FOV is 210-de-
gree. The rotations are generated by rotating the line OOc around
the viewpoint Oc with an angle, which is 0, 0.3, 0.6, 0.9 degree
respectively. The mirror boundary is projected by Eq. (18). For each
rotation angle, we perform 100 independent trails. In each trail,
Gaussian noise with zero mean and standard deviation r = 5 pixels
is added to each image point of the mirror boundary. Means and
standard deviations of the estimated parameters in Eq. (17) are
shown in Table 1. We can see from the table that the principal
point and the aspect ratio r are not sensitive to image noise, the as-
pect ratio r is hardly influenced by the rotation angle, and the prin-
cipal point is very close to real value with standard deviation
increasing gradually by the variation of the rotation angle. We also
can see the ratio s/f is not reliable due to image noise and the rota-
tion. However, the skew s is very little in real case, and nearly can
be neglected, so the ratio s/f will have a little impact on effective
focal length estimation.
5. Experimental results

In this section, we use simulated and real data to evaluate the
performance of the proposed algorithm. The boundary ellipse is fit-
ted using the algorithm in (Fitzgibbon et al., 1999).
5.1. Simulations

The intrinsic parameters of the simulated catadioptric cameras
are (rf, f, s, u0, v0, n) = (500, 400, 1, 1024, 768, 0.9), and the FOV is
210-degree. One catadioptric line image is randomly generated
by choosing one unit normal vector corresponding to a great circle
on the viewing sphere. To simulate actual conditions, we choose
100 points on a one-third portion of the entire circle, and project
these points to the catadioptric image plane. The generated line
image is shown in Fig. 3. Gaussian noise with zero mean and stan-
dard deviation r is added to each image point of the space line and
the principal point as well. The noise level r is varied from 0 to 5
pixels with a step of one pixel. For each noise level, we perform
100 trails. In each trail, the aspect ratio r and the ratio s/f is set
by adding Gaussian noise with zero mean and standard deviation
r1 = 0.005 to their real values respectively. Means and standard
deviations of the estimated effective focal length with respect to
different noise levels are shown in Table 2. From the table, we
can see that the mean values are very close to the ground truth
in every noise level, and the standard deviation is increased grad-
ually with the raising of the noise level. We also perform the sim-
Table 1
Means and standard deviations of the estimated parameters from the mirror
boundary.

Rotation u0 v0 r s/f
Angle 512 384 1.0833 0.0042

0 512.0 ± 0.66 384.0 ± 0.66 1.0830 ± 0.0041 0.0037 ± 0.0039
0.3 512.0 ± 1.69 383.9 ± 1.52 1.0838 ± 0.0043 0.0041 ± 0.0041
0.6 512.0 ± 2.98 383.6 ± 2.62 1.0838 ± 0.0049 0.0039 ± 0.0041
0.9 512.8 ± 3.97 384.9 ± 4.12 1.0835 ± 0.0046 0.0040 ± 0.0044

Table 2
Means and standard deviations of the estimated effective focal length.

Noise 0 1 2 3 4 5

Mean 399.82 400.09 400.37 400.94 400.67 401.48
Standard deviation 2.06 2.80 3.60 4.30 5.78 6.00
ulation for n = 1, i.e. for para-catadioptric camera, the result is
similar. It shows that the proposed method is effective and robust.
In essence, the algorithm is similar to RANSAC, and a good estima-
tion can be obtained as long as one good sampling exists among all
samplings.
5.2. Real data

5.2.1. With paracatadioptric camera
Fig. 4a shows an image with a resolution of 1024�768 down-

loaded from http://mail.isr.uc.pt/’carloss/software/software.htm,
which is acquired by an uncalibrated paracatadioptric camera. Its
field of view (FOV) is 180� Barreto and Araujo, 2006. Four line
images are selected and shown in the figure. The used points on
the line images and the boundary ellipse are manually selected
using the software presented in this website. The camera parame-
ters estimated from the bounding ellipse of the catadioptric image
are (r, s/f, u0, v0) = (0.9993, 3.94e � 4, 520.3, 395.7). As described in
Section 4, to improve estimation accuracy, we use the four line
images. The estimated effective focal length is 318.73. In order to
validate the estimation, we rectify the original distorted image
using the estimated parameters. Since the camera’s FOV is large,
we only show some part of the rectified image in Fig. 4b. We can
clearly see the rectified lines are very straight. The estimation re-
sult by the algorithm in (Wu et al., 2006) (hereafter called DLP)
is (r, s, f) = (1.01, 4.3, 313.15), which is estimated with the condi-
tion that the principal point is known. We also perform the algo-
rithms proposed in (Barreto and Araujo, 2005 and (Wu et al.,
2008), which need fit conics to line images, hereafter called CP
and CLP respectively. Since the approach in (Barreto and Araujo,
2006 for conic fitting of line images in paracatadioptric systems
is effective, it is used here in performing CP and CLP. When fitting
conics to the line images, we use the prior information that the as-
pect ratio is 1. Estimation results of the camera parameters using
these conics of the line images are (rf, f, s, u0, v0, n) =
(319.3, 3, 9.3, �0.0225, 516.9, 394.1, 1) and (rf, f, s, u0, v0, n) =
(318.95, 31, 8.66, 0.0092, 516.9, 394.1, 1) by CP and CLP respec-
tively. We can see that all the estimation results are very close to
the one using the proposed method. For a quantitative comparison,
we transform the catadioptric image into a perspective image by
using these estimation results of the camera parameters respec-
tively, and compute the fitting error of the four lines in the per-
spective image. Since both the proposed method and DLP need
random sampling of image points, we perform 200 times of cali-
brations by the proposed method and DLP respectively, and com-
pute the mean and standard deviation of the fitting error. The
fitting errors of the four algorithms are shown in Table 3. From
the table, we can see that the mean values are close to each other;
while the standard deviation of DLP is larger than the one of the
proposed method. It shows that the proposed method is more sta-
ble than DLP. In principle, the proposed method is a robust estima-
tion technique, and the final estimation result is determined by the
best one among all samplings, whereas the estimation result of DLP
is determined by all samplings, which probably include some bad
ones. Both methods need some parameters known in advance, so
they will be influenced by the known parameters to some extent.
In CP and CLP, conic fitting of the line images is indispensable,
and the estimation result is susceptible to quality of the conic
Table 3
The fitting error of the four algorithms.

Algorithm The proposed DLP CP CLP

Mean 0.3815 0.3829 0.3929 0.4032
Standard deviation 0.0018 0.0103 — —

http://mail.isr.uc.pt/
http://mail.isr.uc.pt/


Table 4
RMS of the reprojection error.

Method The proposed method M6 M9 M23

RMS of reprojective error 2.001 3.350 1.770 1.031
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fitting. A significant estimation can be obtained with an effective
conic fitting of the line images since the two algorithms estimate
all parameters by the constraints from the fitted conics. However,
the approach in (Barreto and Araujo, 2006) for conic fitting of line
images only work for paracatadioptric images, and there is still not
an effective way for other types of catadioptric images. In the fol-
lowing, we will show another case with hypercatadioptric camera.

5.2.2. With hypercatadioptric camera
The used catadioptric system consists of a NIKON COOLPIX990

camera and a hyperbolic mirror. The mirror is designed by the Cen-
ter for Machine Perception, Czech Technical University, its FOV is
217.2�, and the eccentricity of the hyperbolic mirror is 1.302, cor-
responding to n = 0.966. One image of an indoor scene is taken with
a resolution of 512 � 384. Four lines are used and shown in Fig. 5a.
The intrinsic parameters of the camera estimated from the bound-
ing ellipse of the catadioptric image are (r, s/
f, u0, v0) = (0.9994, �5.83e � 5, 254.4, 188.5). The estimated effec-
tive focal length using the four line images is 141.6. The rectified
image by this estimation result is shown in Fig. 5b. On the contrary,
calibrations by CP and CLP are not solvable due to bad conic fitting
of the line images. Similar to the paracatadioptric case, the estima-
tion by DLP is less stable than the one by the proposed method.

5.2.3. With calibration object
We use the same hypercatadioptric camera to take pictures of a

calibration object from four different viewpoints, one of which is
shown in Fig. 6. 25 image points of five space lines of a plane is
chosen manually as Fig. 6 shows. The paper (Kannala et al., 2008)
gives an extensive discussion on camera calibration using a cali-
bration object. Here we calibrate the images by the proposed
method and the approach in (Kannala et al., 2008) respectively.
When performing the calibration in (Kannala et al., 2008), we use
the calibration toolbox that the author provides, where different
imaging models are used. RMS of the reprojection error of the 25
space points is computed for different models and different meth-
ods, which is shown in Table 4. Details on the imaging models can
be seen in (Kannala et al., 2008. From the table, we can see that the
reprojection error of the proposed method is less than the one of
the M6 model and larger than the ones of the other two models.
The models in (Kannala et al., 2008) include distortion terms that
model the possible imperfections in the optical system. The M23
and M9 have more distortion terms than M6, so maybe the two
models are more accurate. On the other side, the calibration in
(Kannala et al. 2008) is based on 2D–3D point correspondences,
which usually is thought of high accuracy, while the proposed
method does not use the accurate 3D space information. Compar-
Fig. 6. Image of a calibration object.
atively, the proposed method is more flexible and suitable for auto-
mated calibration.

6. Conclusion

Nearly all central catadioptric calibration approaches using
lines need conic fitting of line images, which is hard to accomplish
and highly affects the calibration accuracy. In this paper, we pres-
ent a polynomial constraint on the effective focal length of central
catadioptric cameras, which is based on a property that the projec-
tions of any three collinear space points on the viewing sphere
should be coplanar with the view sphere center. Based on this con-
straint, we propose a simple method for estimation of the effective
focal length of central catadioptric cameras. The method needs no
conic fitting of line images, and is easy to implement. Only a single
view of one space line is enough to estimate the effective focal
length, and no other space information is needed. Experiments
on simulated and real data show the proposed method is robust
and effective.
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Appendix A

Denote Eq. (13) as,

a1
ffiffiffiffiffiffi
k1
p

þ a2
ffiffiffiffiffiffi
k2
p

þ a3
ffiffiffiffiffiffi
k3
p

þ a4f 2 ¼ 0; ð19Þ

where,

k1 ¼ b1f 4 þ c1f 2 þ d1f þ e1;

k2 ¼ b2f 4 þ c2f 2 þ d2f þ e2;

k3 ¼ b3f 4 þ c3f 2 þ d3f þ e3:

Then, by removing radical sign with the software MAPLE, Eq. (19)
becomes a polynomial equation with degree 16 on the effective fo-
cal length f as follows:

16a32a42f 4ða22ðb2f 4 þ c2f 2 þ d2f þ e2Þ � a42f 4 þ a12ðb1f 4

þ c1f 2 þ d1f þ e1Þ � a32ðb3f 4 þ c3f 2 þ d3f þ e3ÞÞ2ðb3f 4 þ c3f 2

þ d3f þ e3Þ � ð�2a22ðb2f 4 þ c2f 2 þ d2f þ e2Þa32ðb3f 4 þ c3f 2

þ d3f þ e3Þ þ a14ðb1f 4 þ c1f 2 þ d1f þ e1Þ2 � 2a22ðb2f 4 þ c2f 2

þ d2f þ e2Þa42f 4 � 2a12ðb1f 4 þ c1f 2 þ d1f þ e1Þa22ðb2f 4 þ c2f 2

þ d2f þ e2Þ � 2a12ðb1f 4 þ c1f 2 þ d1f þ e1Þ þ a32ðb3f 4 þ c3f 2

þ d3f þ e3Þ þ a44f 8 þ a24ðb2f 4 þ c2f 2 þ d2f þ e2Þ2 þ a34ðb3f 4

þ c3f 2 þ d3f þ e3Þ2 � 2a12ðb1f 4 þ c1f 2 þ d1f þ e1Þa42f 4

þ 6a32ðb3f 4 þ c3f 2 þ d3f þ e3Þa42f 4Þ2 ¼ 0: ð20Þ

Since the canonical form of Eq. (20) is too long, we do not show it
here.
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If s ¼ 0 or s ¼ df with d being a constant, Eq. (19) becomes a
polynomial equation with degree 4 on the effective focal length
square as follows:

F18f 8 þ F17f 6 þ F16f 4 þ F15f 2 þ F14 ¼ 0; ð21Þ

where,

F14 ¼ �ð�2a22ðc2þ d2þ e2Þa32ðc3þ d3þ e3Þ
þ a34ðc3þ d3þ e3Þ2 þ a24ðc2þ d2þ e2Þ2

þ a14ðc1þ d1þ e1Þ2 � 2a12ðc1þ d1þ e1Þa22ðc2þ d2þ e2Þ
� 2a12ðc1þ d1þ e1Þa32ðc3þ d3þ e3ÞÞ2;

F15¼16a32a42ða22ðc2þd2þe2Þ�a32ðc3þd3þe3Þ
þa12ðc1þd1þe1ÞÞ2ðc3þd3þe3Þ
�2ð�2a22ðc2þd2þe2Þa32ðc3þd3þe3Þ
þa34ðc3þd3þe3Þ2þa24ðc2þd2þe2Þ2

þa14ðc1þd1þe1Þ2�2a12ðc1þd1þe1Þa22ðc2þd2þe2Þ
�2a12ðc1þd1þe1Þa32ðc3þd3þe3ÞÞð�2a22ðc2þd2þe2Þa32b3

�2a22b2a32ðc3þd3þe3Þ�2a22ðc2þd2þe2Þa42

þ2a14ðc1þd1þe1Þb1�2a12ðc1þd1þe1Þa22b2

�2a12b1a22ðc2þd2þe2Þþ6a32ðc3þd3þe3Þa42

þ2a34ðc3þd3þe3Þb3�2a12ðc1þd1þe1Þa32b3

�2a12b1a32ðc3þd3þe3Þ�2a12ðc1þd1þe1Þa42

þ2a24ðc2þd2þe2Þb2Þ;

F16¼16a32a42ða22ðc2þd2þe2Þ�a32ðc3þd3þe3Þ
þa12ðc1þd1þe1ÞÞ2b3þ32a32a42ða22ðc2þd2þe2Þ
�a32ðc3þd3þe3Þþa12ðc1þd1þe1ÞÞð�a42þa12b1

þa22b2�a32b3Þðc3þd3þe3Þ�2ð�2a22ðc2þd2þe2Þ
�a32ðc3þd3þe3Þþa34ðc3þd3þe3Þ2þa24ðc2þd2þe2Þ2

þa14ðc1þd1þe1Þ2�2a12ðc1þd1þe1Þa22ðc2þd2þe2Þ
�2a12ðc1þd1þe1Þa32ðc3þd3þe3ÞÞð�2a12b1a32b3þa44

�2a22b2a32b3þa34b32�2a12b1a22b2þa14b12�2a12b1a42

þa24b22�2a22b2a42þ6a32b3a42Þ
�ð�2a22ðc2þd2þe2Þa32b3�2a22b2a32ðc3þd3þe3Þ
�2a22ðc2þd2þe2Þa42þ2a14ðc1þd1þe1Þb1

�2a12ðc1þd1þe1Þa22b2�2a12b1a22ðc2þd2þe2Þ
þ6a32ðc3þd3þe3Þa42þ2a34ðc3þd3þe3Þb3

�2a12ðc1þd1þe1Þa32b3�2a12b1a32ðc3þd3þe3Þ
�2a12ðc1þd1þe1Þa42þ2a24ðc2þd2þe2Þb2Þ2;

F17 ¼ 32a32a42ða22ðc2þ d2þ e2Þ � a32ðc3þ d3þ e3Þ
þ a12ðc1þ d1þ e1ÞÞð�a42 þ a12b1þ a22b2� a32b3Þb3

þ 16a32a42ð�a42 þ a12b1þ a22b2� a32b3Þ2ðc3þ d3þ e3Þ
� 2ð�2a22ðc2þ d2þ e2Þa33b3� 2a22b2a32ðc3þ d3þ e3Þ
� 2a22ðc2þ d2þ e2Þa42 þ 2a14ðc1þ d1þ e1Þb1

� 2a12ðc1þ d1þ e1Þa22b2� 2a12b1a22ðc2þ d2þ e2Þ
þ 6a32ðc3þ d3þ e3Þa42 þ 2a34ðc3þ d3þ e3Þb3

� 2a12ðc1þ d1þ e1Þa32b3� 2a12b1a32ðc3þ d3þ e3Þ
� 2a12ðc1þ d1þ e1Þa42 þ 2a24ðc2þ d2þ e2Þb2Þð
� 2a12b1a32b3þ a44 � 2a22b2a32b3þ a34b32

� 2a12b1a22b2þ a14b12 � 2a12b1a42 þ a24b22

� 2a22b2a42 þ 6a32b3a42Þ;
F18 ¼ 16a32a42ð�a42 þ a12b1þ a22b2� a32b3Þ2b3

� ð�2a12b1a32b3þ a42 � 2a22b2a32b3þ a34b32

� 2a12b1a22b2þ a14b12 � 2a12b1a42 þ a24b22

� 2a22b2a42 þ 6a32b3a42Þ2:
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