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Abstract—Although marker-based optical motion capture has
been a useful method for computer animation during the past
decades, automatic and robust motion tracking from multiple
video sequences is still very challenging. Several critical issues
in practical implementations are not adequately addressed. For
example, how to track and identify the reconstructed 3D points
after image matching process? How to handle the heavy occlusion
problem? This paper gives a careful investigation of the above
issues. In particular, we propose a novel way to track and identify
proper markers, and a new method of filling missing markers by
taking account of the human model constraints. Experiments are
presented to show its accuracy and robustness.
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I. INTRODUCTION

Marker-based motion capture has been an important tool
for collecting and analyzing the human motions in clinical gait
analysis and sports training. However, even with high-fidelity
and expensive motion capture equipment, motion capture data
may still contain noise, missing data and outliers that must
be removed manually prior to further processing[1][2][3][4].
It is still challenging to capture reliable and clean 3D human
motion data automatically.

In marker-based optical motion capture, multi-view image
data is used to compute the motion parameters of moving
objects. This method uses a calibrated multi-camera system
to reconstruct the motions of moving subjects by measuring
the 3D trajectories of passive reflective markers attached to the
subjects. To use the recorded data, information such as joint
angles, skeletal parameters and the topology of the captured
subjects should be extracted. Key issues are that markers can
be ambiguous, occluded or missing from certain cameras, and
thus the 3D reconstruction and tracking may fail. All these
conditions reduce the capability of automatic motion capture.
Most professional systems(e.g. Vicon [5] et al.) provide a tool
called labeling to identify each marker based on the predefined
human topological model. However, even in those systems lots
of user’s labor-intensive editing work is required, which may
lead further errors [6][1][7]. Several researchers have focused
on model-based motion capture data processing, including
tracking and filling [7], [8]. Herda [7] presented a skeleton-
based tracking method. The method needs initializing the first
tracking frame manually, which is an error prone process due
to the fact that there are often lots of erroneous reconstructed
markers. Its major drawback is its weak robustness. Their
labeling criterion is the smoothness of the marker accelerations
within a sliding window [7], which is not true in most real
scenarios due to abrupt limb motions. Li et al. [8] proposed
a hierarchical search strategy to reconstruct articulated poses
with sparse feature points, while the time complexity is high,
up to 5 seconds for identifying markers per frame. Yu et al.
[6] proposed a marker labeling method for multi-articulated
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targets. Data-driven approaches with a motion database are
also used to fill the missing markers[1].

In this paper, we focus on marker-based gait motion
capture, and propose robust model-based method of tracking
and identifying markers as well as method of filling missing
markers. Here, 18 markers are attached to human lower body
as Vicon [5] does (See Fig.1), each body segment consists of
several markers, all markers on the same body segment are
assumed to form a rigid-body system, thus a body segment is
also called as a rigid body. Our method automatically identify
body markers. To fill missing markers, our method setups a
candidate set for each lost marker, and then reliably identify a
proper filling from this set. Our contributions lie in two aspects:
1) We present a new label likelihood, which is based on the
assumption that the distance between every two markers on
the same rigid body is constant during gait motions. With this
likelihood, we can efficiently obtain robust marker labels using
maximum likelihood criterion. 2) We propose a reliable marker
filling method, which can fill missing markers automatically
in gait motions. The basic idea is to infer possible positions of
missing markers by exploring the rigidity constraints of body
segments and the knowledge of human body structure.

(a) (b)

Fig. 1. (a) 18 markers on human lower body. (b) Human model. Red balls
are joints, blue balls are markers, and body segments are shown as black
segments. The markers within an ellipse belong to the same body segment.
This figure shows four body segments, whereas the experiments in this paper
use seven body segments due to the symmetry of human model.

II. ALGORITHM

A. Assumptions and Outline

We aim at marker-based lower body motion capture. The
lower body consists of a set of connected rigid bodies, and n-
earby bodies are linked by joints (See Fig. 1(b)). Our algorithm
consists of tracking initialization, marker tracking(also called
as marker labeling) and filling, which can be summarized in
Algorithm 1 and Fig. 2. We made four assumptions on the
input data: 1) the multi-camera system has been calibrated[9],
thus the projection matrices of all cameras in the same co-
ordinate system and epipolar geometry between cameras are
known. In our experiments, we use a multi-camera autocali-
bration method [10][11]; 2) there is at least one frame in which
all markers can be reconstructed; 3) most of markers on each
rigid body can be reconstructed at some point in time; 4) the
geometric model of markers on lower body of human(called



Fig. 2. Overview of the gait motion capture method.

as human model) are precalibrated with a separate exercise
motion [5] via a nearly automatic method like [12](human
model calibration), with which the distances between markers
on the same rigid body are obtained.

Algorithm 1 Marker tracking with automatic missing-marker
fillings (See C and D of Section II for explanations)

1: Input: labels at the previous frames, marker coordinates at frame k by
triangulation, and calibrated human model

2: Output: labels of markers at the current frame k
3: Create a set of candidates for each markers (Step 1 and 2 in C of Section

II), matching candidate set.
4: Set NeedRecomp(r) = true and LabelRound(r) = 0 for all rigid

bodies Rb.
5: for each rigid body r ∈ Rb do
6: Search for the maximum likelihood labeling (3) within r via exhaus-

tive search in the matching candidate set (C of Section II);
7: Update matching candidate set for labeled markers of r;
8: if rigid body r is fully labeled then
9: NeedRecomp(r) = false and LabelRound(r) = 2;

10: end if
11: end for
12: while minr∈Rb

LabelRound(r) < 2 do
13: Find rigid body r with the most labeled markers from rigid bod-

ies satisfying NeedRecomp(r) = true and LabelRound(r) =
minr∈Rb

LabelRound(r);
14: Create filling candidate set for missing markers on r (D of Section

II);
15: Search for the maximum likelihood marker labels (See Eq. (3)) within

r via exhaustive search of the matching candidate set and the filling
candidate set;

16: Update the matching candidate set and remove filling candidate set
for labeled markers of r;

17: if rigid body r is fully labeled then
18: NeedRecomp(r) = false and LabelRound(r) = 2;
19: else
20: LabelRound(r) = LabelRound(r) + 1;
21: end if
22: end while

B. Tracking Initialization
Before tracking, we should label the reconstructed 3D

markers (See Fig.3). Human motion contains local geometric
invariance in rigid segments [6][8], and this allows affine
matching with the model at the segment level. Firstly, for
each frame, a set of 3D points can be reconstructed by stereo
matching with the calibrated camera parameters. Secondly, a
marker-labeling method is used to label the reconstructed 3D
markers. We use a hierarchical tracking initialization approach.
The waist segment is regarded as root. The marker-labeling
process begins at the root, and then continues to label the
rigid markers along the hierarchical human body models (See
Fig.1 (b)). If all the markers on the subject can be labeled,
then we start the marker tracking process; otherwise, go to the
next frames for tracking initialization until all the markers can
be labeled. There are four steps to accomplish the tracking
initialization task.

1) The initialization starts with the first frame, which has
at least as many reconstructed markers as the attached
markers on the human body. In the reconstructed
markers, there exist both true markers and reconstruc-
tion outliers due to ambiguity of stereo matching [9].

(a) (b) (c)

Fig. 3. Tracking initialization. (a) Human model. (b) Reconstructed markers.
(c) Labeled markers.

2) Remove infeasible marker configurations with the
distance constraint. For each segment in the body
model, there are a large number of potential cor-
respondences among the reconstructed markers. We
eliminate most of the infeasible correspondences
with the distance constraint. Since the distances of
between-markers in a rigid segment keep almost
constant in motion, we remove all those marker con-
figurations, whose between-marker distances deviate
from those of the segment of the human model by a
user defined threshold.
Let S = {Pi}Ni=1 be the N markers on a segment
of the body model and S

′
= {Qi}Ni=1 be a group

of ordered N reconstructed markers. We identify S
′

as a proper marker labeling candidate of segment S
only if the following criteria is satisfied:

|d(Pi,Pj)− d(Qi,Qj)| < τ1, ∀i, j ∈ [1, N ] (1)

where d(·, ·) denotes the Euclidean distance, and τ1
is a predefined threshold. Note that different order
of the same marker set should be treated as different
labeling.

3) Label markers by minimizing the residue error of
rigid transformation. Let Sk = {Qk,i}Ni=1 be the
remaining K marker groups corresponding to the
segment S = {Pi}Ni=1. We calculate the rigid trans-
formation (Rk, tk) between Sk and S using the
absolute orientation algorithm [13]. Among these
Sks, we select the one that minimizes the following
residue error:

residuek =
1

N

N∑
i=1

∥Pi −RkQk,i − tk∥2 (2)

Once the most probable Sk is found and residuek <
τ2, all markers in this set are immediately labeled
as the corresponding markers in the model, and we
remove the labeled markers from the reconstructed
markers of the current frame, and go to label the
next unlabeled segment along the hierarchical human
model. τ2 is a predefined threshold. If residuek ≥ τ2,
the label results of the segment is not reliable, and
thus go to the next frames for tracking initialization
until all the markers can be labeled.

4) If all the markers on the subject can be labeled, then
we start the marker tracking process (C of Section
II).

We illustrate Step 2 and Step 3 by a 2D example in Fig.
4.
Remark 1: Because the distance constraint (Step 3) cannot
discriminate symmetric body segments (for example left foot
and right foot), we label markers by minimizing the residue
error of rigid transformation (Step 4). The distance constraint
is useful to remove most of infeasible groups of markers with
less computation cost than those with rigid transformation.
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Fig. 4. Illustration of tracking initialization by a 2D example. (a) is a segment
in the body model with three attached markers(blue dots). Each marker is
numbered with its label. By assumption, the distances between each two of
these markers are constant when the segment is in motion. (b)-(f) are five
potential configurations of the reconstructed markers. Note that (c) and (d) are
actually the same marker sets with different labels. In Step 2, we eliminate
all marker configurations that violate criteria Eq. (1), these include (b),(d) and
(f). In Step 3, we estimate the rigid transformations between (c) and (a), (e)
and (a). Based on these transformations, we calculate the residues Eq. (2) and
select (c) as the correct configuration (which has smaller residue than (e)).
The marker labels are then determined by (c).

C. Marker Tracking

After the tracking is initialized, all the markers are labeled,
and these markers can be tracked from one frame to the
next, resulting in marker trajectories over the entire sequence.
Hereafter, marker tracking is also called as marker labeling.
The marker labeling is carried out along the hierarchical human
body models. We explore two constraints on the marker label-
ing, one is temporal and the other is structural. The temporal
constraint enforces: 1) the marker positions are close to those
in the previous frame; 2) the distances between markers on
a rigid body are almost constant during human motion. The
structural constraint states that the between-marker distances
on a rigid body do not deviate much from those in the human
body model (which are known from a calibration process).

The basic idea of the tracking process is as follows (Fig.
5 is an illustration).

1) After all 3D body markers are labeled in the previous
frame k − 1, we project the 3D coordinate of each
marker onto all the camera views with calibrated
projective matrices, and obtain the 2D positions of
the marker in all the views. In the current frame k,
for each 3D marker we setup a circular neighborhood
for each camera view, which is centered at the 2D
position of the marker in frame k − 1, and put the
detected 2D markers within this neighborhood in a
2D marker candidate table. The radius of circular
neighborhood is predefined, which depends on the
velocity of markers, the image resolution, camera
pose and marker-camera distance. In the experiments,
the radius is set to 50 pixels.

2) For each 3D marker, we carry out marker image
matching using the 2D marker candidate table in all
the camera views, and find a set of geometrically
consistent marker matches between each image pair
with epipolar geometry[9]. We organize the matches
for each 3D marker into a list, where the list is a
set of matching 2D markers across multiple images.
Then we calculate the 3D positions of the matching
markers using triangulation[9]. For each 3D marker,
if the distance between the 3D position of matching
markers and the 3D marker’s position in frame k−1 is
larger than a threshold t0, then the matching markers
are removed from the list based on the fact that the
markers does not move very fast. Then we store the
list and the corresponding 3D positions of each 3D

marker in a matching candidate set. The threshold
t0 is predefined, which is larger as markers moves
faster. In our gait tracking experiments, we set t0 as
50 mm.

3) After the matching candidate sets of all 3D markers
are constructed, we use the label likelihood (See
Eq.(3)) to label the markers. If there still exist un-
labeled markers, we can fill missing markers by the
method in D of Section II.

In the following, we describe our method to identify mark-
ers from the matching candidate sets. We introduce a criterion
to evaluate how the label result fits with the human model.
Since the distances between different markers in the rigid
body do not change much during gait motions, the geometric
structure of each rigid body provides a proper criterion for
labeling evaluation.

Denote Sl = {Cp}Rl
p=1 to be the set of Rl markers attached

to the l-th rigid body. The candidates of Cp are obtained by
the matching candidate set of marker p. Our goal is to find the
most probable marker assignment of each Cp of l-th rigid body
from the matching candidate sets. The marker labeling can be
solved by maximizing the probability P (Sl) of Sl, which is
the proposed label likelihood and can be calculated as follows:

P (Sl) =
∏

∀(s,t)∈H

P (Cs,Ct) (3)

where H = {(s, t)|h(s, t) = 1}, h(s, t) = 1 holds if and only
if there is a rigid body segment link between the markers s, t.

P (Cs,Ct) is defined as:

P (Cs,Ct) ∝

{
0 (Cs,Ct) /∈ U(s, t)

exp(− (d(Cs,Ct)−ds,t)
2

2σ2(s,t) ) (Cs,Ct) ∈ U(s, t)

(4)
where U(s, t) is a feasible set of marker s and t with their
corresponding matching candidate sets, which is defined as
follows

U(s, t) = {(Cs,Ct)|d(Cs,Ct) > t1 ∩ d(Cs,Ct) < t2
∩ |d(Cs,Ct)− d′(Cs,Ct)| < t3 ∩ |d(Cs,Ct)−
ds,t| < t3}(t2 > t1 > 0, t3 > 0)

(5)
d(Cs,Ct) and d′(Cs,Ct) are the distances between the mark-
ers s, t in the current and previous frames respectively. ds,t is
the distance between the markers s, t in the human model, and
it is computed in the human model calibration step(See Section
2.1). σ2(s, t) is the deviation of the distance between the
markers s, t, while for simplicity we use σ(s, t) as a positive
constant for all s, t.

In U(s, t), d(Cs,Ct) > t1, d(Cs,Ct) < t2 means that
the distance between the markers s, t cannot be smaller than
a threshold t1 or larger than a threshold t2, |d(Cs,Ct) −
d′(Cs,Ct)| < t3 means that the distances of markers s, t
between the current and previous frames should not change
more than a threshold t3, and |d(Cs,Ct) − ds,t| < t3 means
that the the distances of markers s, t between the current frame
and the human model should not change more than a threshold
t3. In the experiments, the thresholds t1, t2, t3 are predefined
and fixed. Eq. (3) is an evaluation of the rigid body temporal
and structural coherence, and for each rigid body, the markers
can be labeled by maximizing (3) from the matching candidate
sets. If a 3D body marker is labeled, the labeled 3D marker
is kept in its matching candidate set, and the other candidates
in the set of this body marker are removed. This improves
the efficiency of labeling process significantly. If only a part
of markers (at least three) in a rigid body have matching
candidates, these markers can also be labeled with the label
likelihood.



(a) (b)
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Fig. 5. Illustration of our marker labeling process. (a) Find probable projections of marker j onto the C camera views. The red dots are projections of marker
j in the previous frame. Blue dots in the vicinity of red dots are detected 2D marker positions in the current frame. These detections constitute the 2d marker
candidate table Γj . Note that there may be no detections in the vicinity of red dot. (b) Reconstruct probable 3D positions of marker j. Here the red dot is
the position of marker j in the previous frame, and the blue dots are reconstructed from Γj in the current frame. These reconstructions form the set Ωj . (c)
Label markers with the label likelihood. The black dots represent three markers {X1, X2, X3} attached to the same rigid body. The blue dots are probable
positions of these markers (Ω1,Ω2,Ω3). Our goal is to select for each Xi a particular position from Ωi, and these selected positions form the most probable
configuration subject to temporal and structural constraints (See Eq. (3)). The three positions linked with blue dash lines may be such an optimal configuration.

Remark 1: In Line 12 to 22 of Algorithm 1, we use iterations
to fill the missing marker, and the reason is as follows. If a
segment Sa has several missing markers, a missing markers on
Sa could not be filled due to the fact that some other markers
on Sa cannot be filled, while the common markers of Sa and
its nearby rigid segment Sb can be filled in the following filling
process for Sb. Thus, another filling iteration could be helpful
to fill the missing marker on Sa.

D. Filling Missing Markers

The labeling of all markers is necessary in order to asso-
ciate the human model to the cloud of markers [7]. However,
even in professional motion capture systems, it is often the
case that the number of reconstructed markers is smaller than
the actual markers on the human, and lots of manually filling
work is required (See Fill Tools in Vicon iQ [5]. Therefore,
marker labeling alone is not sufficient for automatic motion
capture due to tracking limitations, and a further automatic
filling process is required. In this section, we setup the filling
candidate set of each missing marker by all the four filling
methods (See Fig.6), and then select the proper filling marker
from the candidate sets.

1) Setup of Filling Candidate Set: In this subsection, we
use four methods to setup a filling candidate set of each
missing marker, and the filling candidates obtained by all the
methods will be selected later with label likelihood as shown
in Eq.(3).

Denote k to be the current frame number, m1 to be a
missing marker, mj to be the labeled marker that is connected
with m1 by a rigid body, Mk

j to be the 3D coordinate of the
marker mj in the frame k. In the following, we use all the
following four methods to setup a filling candidate set of each
missing marker.

(1) With Monocular Marker Reconstruction If a body
segment containing the missing marker has at least one labeled
marker, then we can proceed with this method (See Fig. 6(a)).

We check the 2D markers in all camera views for those that
are not used to reconstruct any labeled 3D marker. The feasible
3D marker M1 corresponding to m1 should locate on the 3D
ray passing through the camera center O and the 2D image
position m1[9]. Given that mj is connected to m1 by a rigid
link with length d1,j , M1 can be recovered by intersecting
this ray with a sphere centered at Mj with radius d1,j by
Proposition 1. In our experiment, we use each unlabeled
2D marker as m1 and setup the set of monocular marker
reconstruction. Here, P3×4 = [H3×3,p4] is the projection
matrix of a camera, and it is recovered by multi-camera
calibration[9].

(a) (b)

(c) (d)

Fig. 6. Four methods to setup the missing candidate set. (a) With monocular
marker reconstruction. (b) With displacement vectors between markers on
rigid body. (c) With rigid transformation of rigid body. (d) With five points
constraint.

Proposition 1 Denote m1 to be the image of a missing marker
m1 in a view, d1,j to be the distance between the missing
marker m1 to another connected labeled marker mj . With the
coordinate of mj , Mk

j , the filling candidates of the missing
marker m1 can be computed by Mk

1 = l1X1 + X2 and
Mk

1 = l2X1 +X2, in which X1 = H−1m1, X2 = −H−1p4,
and l1,2 can be computed by l1,2 = −b±

√
∆

2a (if ∆ ≥ 0),
where ∆ = b2 − 4ac, a = ∥X1∥22, b = 2(X2 −Mk

j )
TX1, c =

∥X2 − Mk
j ∥22 − d21,j . (The proof is in the appendix of this

paper.)

(2) With Displacement Vectors between Markers on Rigid
Body If a body segment containing the missing marker has
at least one labeled markers, then we can proceed with this
method(See Fig. 6(b)).

Due to high frame rate of the motion capture system, the
displacement vector between two markers in a rigid body can
be approximated by the displacement in the previous frame k−
1. Therefore, if a marker in a rigid body is missing, given the
other labeled markers in the rigid body and the displacement
vectors in the previous frame, the filling candidate Mk

1 can
be obtained. Firstly, we calculate Dk−1

1,j = Mk−1
1 − Mk−1

j ,
which is the displacement vector between 3D coordinates of
marker m1 and marker mj . And then, the filling candidate of
the marker m1 can be computed by Mk

1 = Mk
j +Dk−1

1,j .



(3) With Rigid Transformation of Rigid Body If a body
segment containing the missing marker has at least three
labeled markers, then we can proceed with this method(See
Fig. 6(c)).

Due to rigid constraint of rigid body, the rigid body
structure is almost fixed within the capture process. If a
body segment, which has at least three labeled markers,
has a marker m1 missing, we can use the labeled markers
in the previous and current frame to compute the rigid
transformation R, t with a state-of-the-art method [13], then
the filling candidate of the marker m1 in the current frame k
can be computed by Mk

1 = RMk−1
1 + t.

(4) With Five Points Constraint If at least four non-coplanar
rigid neighbor markers of the missing marker have been
labeled, and the distances between all the five markers are
known, then we can proceed with this method(See Fig. 6(d)).
Before introducing the method, we introduce the following
proposition.

Proposition 2 With four labeled non-coplanar 3D markers
{Mk

j = (Xj , Yj , Zj)
T }5j=2 and a missing 3D marker Mk

1 =
(X1, Y1, Z1)

T , if the distances between each pair of the five
markers {di,j} are known, then the filling candidate of the
missing marker Mk

1 = (X1, Y1, Z1)
T can be computed with

the following equations:∣∣∣∣∣∣∣∣∣∣∣

W2 W3 W4 W5 0 W1

0 d22,3 d22,4 d22,5 1 d22,1
d22,3 0 d23,4 d23,5 1 d23,1
d22,4 d23,4 0 d24,5 1 d24,1
d22,5 d23,5 d24,5 0 1 d25,1
1 1 1 1 0 1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (6)

by which we can get three linear equations of X1, Y1, Z1
by replacing (W1, ...,W5) with (X1, ..., X5), (Y1, ..., Y5) and
(Z1, ..., Z5) respectively. Since we have three unknown vari-
ables X1, Y1, Z1 and three linear equations, then we can
compute Mk

1 = (X1, Y1, Z1)
T . This proposition was given

and proved in [14].

If at least four rigid neighbor markers of the missing marker
m1 have been labeled, and the distances between m1 and its
labeled neighbor markers can be computed in the previous
frame or human model, then the filling candidate of the marker
m1 in the k-th frame, Mk

1 , can be obtained with Proposition
2.

2) Selection of Filling Candidate Set: For each 3D marker,
if the distance between the 3D position of filling candidate
marker and the 3D body marker’s position in frame k − 1 is
larger than a threshold t0(set to 50mm), then the filling marker
is removed from the filling candidate set. We start with the
rigid body which has the most labeled markers among all the
rigid bodies with missing markers, and identify the missing
markers using the label likelihood (See Eq.(3)) with the aid of
labeled markers. The candidates of each 3D missing marker
are obtained with the combined set of its filling and matching
candidate sets, and the candidate of each labeled 3D marker is
the labeled marker obtained in C of Section II. If a 3D marker
is filled, its filling candidate set is removed. We store the filled
3D marker in its matching candidate set and remove other
candidates in this set. This step will be iterated until no more
unlabeled markers can be filled (See Algorithm 1). If a marker
can not be filled, then we go to the tracking initialization step
to restart tracking.

E. Model-Based Postprocessing

In order to ensure the rigid body constraint(i.e. the dis-
tance between different markers in a rigid body keeps almost

constant), we refine the marker coordinates by minimizing
the following cost functions in the sequence of 3D marker
positions {M̃k, k = 1, ..,K0}:

L(M̃k) = Ek
1 + ηEk

2 , k = 1, ..,K0 (7)

where Ek
1 = 1

N

∑N
i=1 ||Mk

i − M̃k
i ||2 and Ek

2 =
1
R

∑
(s,t)∈H(||M̃k

s - M̃k
t ||2 − d2s,t)

2. M̃k
i is initialize

with Mk
i by our method in C and D of Section II. Ek

1 means
that the refined coordinates of markers in frame k, M̃k

i , could
not deviate much from initial estimations Mk

i , and Ek
2 is the

marker distance constraint on the same rigid body of frame
k. R in Ek

2 is the total number of the rigid marker-pair of
the lower body, and ds,t is the distance of markers s and t
in the human model. η is a predefined weight. The above
optimization problems are solved with Levenberg-Marquardt
method[9]. The optimization process converges fast because
of known skeletal lengths.

III. EXPERIMENTS

We conduct comparison experiments to evaluate the per-
formance of the method without filling missing markers, the
seminal method in [7] and our method. The thresholds in the
method are set as τ1 = t3 = 30 mm, τ2 = 10 mm, t0 = 50
mm, t1 = 20 mm, t2 = 600 mm. The thresholds are fixed for
all experiments.

We tested the algorithm performance with a variety of
human motion sequences, including running and jumping.
The data set used in our experiments consists of a motion
capture sequences, which is with 1211 frames captured by
six Photonfocus video cameras at 120 FPS. The input data
is a jumping sequence of unlabeled 2D markers with outlier
and missing markers. We carry out comparison experiments
by down-sampling the capture rates to 60 and 40 FPS. The
down sampling is meaningful, because 60 and 40 FPS are
usually enough for smooth motion capture and the expense
of used camera can be at a lower price. If a frame is with a
unfilled marker and the tracking initialization cannot be done,
we regard the frame as a failure frame. Comparisons are shown
in Tab. 1. The results without filling missing markers have
many failure frame, and the seminal model-based method [7]
does improve the tracking results significantly. As shown in
Tab. 1, the tracking results of our method are fairly better
than the results obtained with the other two methods, and our
method can track all the markers successfully. 1

TABLE I. FAILURE FRAME NUMBER BY OUR METHOD, [7] AND
WITHOUT FILLING.

frame number FPS our method method[7] without filling
1211 120 0 159 171
605 60 0 49 91
403 40 0 45 50

Illustrative results of a jumping sequence is given in Fig.
7, in which we show the motion data of six frames in 3D
position space and the joints are estimated by the method [15].
The RMS distance errors of all rigid mark-pairs by our method
and [7] are 6.52 mm and 13.50 mm. The ground truth marker-
pair distances of each rigid segments are measured with a ruler
before the gait motion tracking. The average distance of rigid
marker-pairs in the lower body is about 210 mm. Thus, our
method can get higher accuracy. The capture sequences were
subject to intermittent missing points, while our method can
identify the markers throughout the motion capture sequences.
With our method, a motion capture frame costs about 0.03
second on an average.

Illustrative results of a walking sequence are shown in Fig.
8. The RMS distance errors of all rigid mark-pairs by our

1Please see the supplementary video for more comparisons.



method and [7] are 7.49 mm and 9.57 mm. Thus, our method
can get higher accuracy. With the RMS errors in walking and
jumping and Fig. 9(a)(b), we know that the error with our
method is almost at the same level (smaller than 10mm) when
the motion type changes. The error with [7] increases if the
motion type changes from walking to jumping, which could
be caused by that the smoothness assumption of the marker
trajectory in [7] does not hold in fast motions like jumping.

(a)

(b)

Fig. 7. The results of jump motion sequence. (a) 2D markers in six camera
views. (b) Gait motion data of seven frames in 3D position space. (first row)
The markers in position space(marker are shown as green, pink and blue balls).
(second row) The joints in position space(joints are shown as red balls). (third
row) and (fourth row) are the motion data in joint-angle space from two
viewpoints.

(a)

(b)

Fig. 8. The results of walk motion sequence. The items (a)(b) have the same
meanings as in Fig. 7.

IV. CONCLUSIONS

In this paper, we propose a new gait motion tracking and
marker filling method in passive optical motion capture. Our
method can identify body markers automatically. For missing
markers, our method can set up a filling candidate set with
available rigid body constraints, and then reliably identify the
missing markers from the candidate sets. The robustness and
accuracy have been demonstrated by experiments. The method
is automatic and an online algorithm, which requires no user
interaction once the algorithm starts, thus it is very suitable
for applications.
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APPENDIX

Proof of Proposition 1: The back-projected line of m1
can be expressed by X(l) = lX1 + X2[9], in which X1 =
H−1m1, X2 = −H−1p4. Since the 3D body marker is on
the back-projected line, we can obtain Mk

1 = lX1 + X2.
Since the distance between Mk

1 and Mk
j is d1,j , we have

(Mk
1 − Mk

j )
T (Mk

1 − Mk
j ) = d21,j . Therefore, we get an

equation about l

∥X1∥22 l
2+2(X1−Mk

j )
TX1l+

∥∥X2 −Mk
j

∥∥2
2
−d21,j = 0 (8)

We use the denotation in Proposition 1. If ∆ ≥ 0, the roots of
l are l1,2 = −b±

√
∆

2a .


