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Abstract

Face photo-sketch and sketch-photo synthesis have
important usages in law enforcement. It is challeng-
ing to synthesize face sketches from photos because the
drawing techniques and styles of artists’ depictions are
hard to be learned. To synthesize face photos from
sketches is also hard due to its ill-posed nature. In order
to avoid mosaic effects in the existed photo-sketch meth-
ods, we propose a smoothness-constrained photo-sketch
synthesis method via sparse representation. The work
is an extension of the previous work[1]. The method is
modeled as the minimization of an energy function, a
large scale convex optimization problem with l1-norm
constraint. Since previous optimization methods are
infeasible to solve our problem, we propose an itera-
tive optimization approach, which decomposes the large
scale optimization into a sequence of small scale opti-
mizations and solve them iteratively to obtain the ap-
proximated optimal solution. The same synthesis strat-
egy can be also used to synthesize photos from sketches.
Experiments show its effectiveness.

1 Introduction

Face photo-sketch and sketch-photo synthesis have a
wide range of applications for law enforcement [4, 8].
In many scenarios of law enforcement, traditional face
recognition based on photos is infeasible because the
face photo of a suspect is unavailable. Only the face
sketch of the suspect is available according to the de-
scription of the wittiness [4]. Researchers proposed
two approaches for identification: (a) sketch based face
retrieval; (b) photo based face retrieval. In the first
approach, face sketches synthesis provides an alterna-
tive to the sketch database collection; In the second ap-
proach, the synthesized face photo of the suspect is used
for recognition. Compared with face photos, sketches
are more concise and discriminative [8].

Several studies have been conducted on sketch syn-
thesis. Tang [6] developed an eigentransform based
algorithm, in which the transformation between pho-
tos and sketches is assumed to be linear. Liu [4] pre-
sented a method which is similar in the spirit to LLE
[5]. This method needs a carefully chosen of the num-
ber of nearest neighbors. Wang [8] proposed a method

using a multiscale Markov random field model, which
is relatively time-consuming due to use an inference
procedure with belief propagation as reported in [8].
Many other algorithms are proposed to synthesize face
sketches, such as Zhang [11] proposed a sketch synthe-
sis by using SVM. In recent years, sparse representation
has been regarded as a breakthrough in signal process-
ing and pattern recognition, it has been applied widely
in various computer vision tasks [9][10]. In the previ-
ous work [1], we proposed to synthesis face sketch via
sparse representation. Sparseness is desired due to its
succinct representation ability and its discriminative na-
ture. Another merit of the method is that it has smaller
storage requirement due to the fact that it only requires
a much smaller succinct dictionary by sparse coding.

In this paper, we propose a smoothness-constrained
face photo-sketch synthesis method, which has the ad-
vantage that it alleviates mosaic effects of synthesized
sketches. The method can be outlined as: firstly, the
training photos and sketches are divided into overlapped
patches. In each patch, photo and sketch patch pairs are
used to built a coupled dictionary[3]; Secondly, for each
image patch in the test photo, we compute its sparse rep-
resentation coefficient with respect to the photo bases
in coupled dictionary. The sketch patch is recovered
with the same coefficient and the sketch bases in cou-
pled dictionary (Section 2). The coefficient is used as
the initialization of the sketch synthesis results; Thirdly,
smoothness-constrained face photo-sketch synthesis is
modeled as minimization of an energy function (Sec-
tion 3), which is usually a large-scale convex optimiza-
tion problem with l1-norm constraint, and then we pro-
pose an efficient decomposition algorithm to solve it by
using a series of small scale convex optimizations. Ex-
periments show that the results with our method and
a state-of-the-art method [8] resemble the sketches by
artists well.

2 Initialization of Face Photo-Sketch Syn-
thesis

Face photo-sketch synthesis is initialized via sparse
representation[1]. Given a face photo P as input, in this
section, we give an initialization to its corresponding
face sketch S using sparse representation.
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2.1 Dictionary Preparation

We use sparse coding to build the local coupled dic-
tionaries for sketch patches and photo patches. De-
note pi to be the i-th photo patch in the test photo, si
to be the desired sketch patch. Since the same face
component is roughly in the same region of photos
and sketches due to geometry alignment, we divide the
training face photos and sketches into a set of over-
lapping patches {pi}n

i=1 and {si}n
i=1 by scanning the

whole image (See Fig. 1). For each image patch, a
coupled dictionary is built using image patches within
the local region of the training photo and sketch set.
Instead of building dictionaries on raw image patches,
we use the sparse coding [3] to get a succinct dictio-
nary. We assume that the sparse linear relationship of a
given photo patch with respect to the photo bases of the
coupled dictionary are maintained for the correspond-
ing sketch patch with respect to sketch bases.

Sparse coding is an unsupervised learning algorithm
for discovering concise high-level basis vectors us-
ing a large number of unlabeled data[3]. For an in-
put data ai, sparse coding discovers basis vector set
{b1, . . . ,bm}(i = 1...m). Thus ai can be represented
approximately as linear combination of basis vectors,
i.e. ai ≈ b1t1+. . .+bmtm, in which ai relies on a few
basis vectors, and many linear coefficients are equal to
zero. Then the basis vectors are learned by minimizing
an energy function, which consists of two items: the re-
construction error and l1-norm penalty which can guar-
antee that the coefficients to be sparse. The problem is
solved by an iterative strategy of two convex optimiza-
tion problems.

Denote (D̂i
P , D̂i

S) to be an local coupled dictionary
of the i-th patches in photo and sketch. D̂i

P is composed
of basis vectors of the i-th photo patch, and D̂i

S is com-
posed of corresponding basis vectors of the i-th sketch
patch. For each photo patch pi, we find its sparse rep-
resentation with respect to local photo dictionary D̂i

P

as pi = D̂i
P αi. According to the assumption, with the

sparse coefficient αi and local sketch dictionary D̂i
S , we

can initialize the sketch patch as si = D̂i
Sαi.

2.2 Sparse Representation

Given the photo patch pi, the sparse representation
of pi with respect to the local dictionary D̂i

P can be for-
mulated as a constrained l1-norm optimization problem
as follows:

αi = arg min ‖αi‖1 s.t. D̂i
P αi = pi, (1)

The minimization problem has the same formulation as
Lasso for linear model estimations in statistics[2], thus
αi can be solved easily with Lasso. Sparseness is de-
sired due to its succinct representation ability and its
discriminative nature.

We reconstruct an initialized face sketch by stitching
the estimated sketch patches si = D̂i

Sαi, and use the
obtained αi as the initial value of following face sketch
refinement.

Figure 1. The overlapped image patches of the image
patch and its adjacent image patches.

3 Face Photo-Sketch Synthesis Method

In this section, we use the texture smoothness con-
straint of sketch to refine the initialized results by the
method in Section 2, which can alleviate mosaic effects
of the initialized sketch.

3.1 Face Sketch Refinement

The synthesized sketch in Section 2 usually has mo-
saic effects due to the fact that each local patch is inde-
pendently synthesized and the local texture smoothness
constraint is not enforced. We proposed a sketch syn-
thesis approach via sparse representation, which is ca-
pable of enforcing local texture smoothness constraint
and alleviating mosaic effects. An energy function is
minimized to solve the problem. The energy function
denoted as E (See Eq.(2)) consists of three parts: 1) E1
measures the difference between the original face photo
and the face photo synthesized by sparse coefficient; 2)
E2 measures the smoothness of the synthesized sketch
patches with its adjacent patches; 3) E3 is an l1-norm
regularization term to enforce the sparse representation.
The coefficients α1, . . . , αn of the refined face sketches
can be obtained by minimizing the energy function E:

E = E1 + β2E2 + λE3 (2)

E1 =
n∑

i=1

‖pi − D̂i
P αi‖2

E2 =
n∑

i=1

∑

j∈N (i)

∥∥∥TiD̂i
Sαi −TjD̂

j
Sαj

∥∥∥
2

E3 =
n∑

i=1

‖αi‖1

where β2 and λ are regularization parameters to balance
the weights of E1, E2, E3, n is the number of image
patches in each photo and sketch image, pi ∈ Rd is the
i-th photo patch, N (i) is the set of neighboring patches
of pi, Ti and Tj are the matrixes which extract the
overlapped regions of neighboring patches pi and pj ,
and D̂i

Sαi and D̂j
Sαj to be the corresponding sketch

patches of si and sj . Denote ᾱ = [αT
1 , . . . , αT

n ]T , then
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the energy function (2) can be transformed into the fol-
lowing equivalent problem:

E = ‖X̄− D̄ᾱ‖2 + λ‖ᾱ‖1 (3)

where ᾱ ∈ Rmn×1, m is the number of basis vectors
by sparse coding, and n is the number of patches in an
image. In our experiment, the number of image patches
n is about 5000, m is 128, thus the dimension of ᾱ is
quite high. Optimization of the energy function, which
is a large scale convex optimization problem with l1-
norm regularization, is a non-trivial task, and traditional
methods for l1-norm optimization problem is infeasible.

We propose a decomposition method to solve the
problem. The energy function of (3) is decomposed
into a series of small problems. We divide all the vari-
ables in the energy function to be the sets of working
set and non-working set. In each iteration, variables in
the working set is chosen and the corresponding sub-
problems are recomputed. The working set is selected
by computing the difference of gray value of the over-
lapped regions between each image patch and its adja-
cent patches. The difference is measured by the l2-norm
difference. For a given threshold ε, if the i-th image
patch and its adjacent image patches violates at least
one of the following conditions

‖TdFiu
−TuFi‖ ≤ ε, ‖TuFid

−TdFi‖ ≤ ε

‖TrFil
−TlFi‖ ≤ ε, ‖TlFir

−TrFi‖ ≤ ε

where Fi = D̂i
Sαi is the feature vector of the i-th

image patch, Fiu
= D̂iu

S αiu
,Fid

= D̂id

S αid
,Fil

=
D̂il

Sαil
,Fir

= D̂ir

S αir
are the feature vectors of its up,

down, left and right neighboring patches, respectively.
Then we call the i-th image patch an ε-smooth violat-
ing image patch. Here, D̂iu

S , D̂id

S , D̂il

S , D̂ir

S are the local
sketch dictionaries of the up, down, left and right neigh-
boring image patches.

Suppose patch i to be a randomly selected ε-smooth
violating image patch. We update its sparse coefficient
by minimizing the following small scale problem

min
αi

‖αi‖1

s.t.

||pi − D̂i
P αi||22 ≤ ε̃2

||TdD̂iu

S αiu
−TuD̂i

Sαi||22 ≤ ε2

||TuD̂
id

S αid
−TdD̂i

Sαi||22 ≤ ε2

||TrD̂
il

Sαil
−TlD̂i

Sαi||22 ≤ ε2

||TlD̂ir

S αir
−TrD̂i

Sαi||22 ≤ ε2

.
(4)

where αiu
, αid

, αil
, αir

are coefficients of the up,
down, left and right neighboring patches of patch i in
the previous iteration, and ε̃ is the upper bound of the
noise term. Here, the coefficients are initialized with
the results Section 2.

The above constrained optimization can be solved by

the following unconstrained optimization problem

min
αi

‖pi − D̂i
P αi‖22

+β2
1‖TdD̂iu

S αiu
−TuD̂i

Sαi‖22
+β2

2‖TuD
id

S αid
−TdD̂i

Sαi‖22
+β2

3‖TrD̂
il

Sαil
−TlD̂i

Sαi‖22
+β2

4‖TlD̂ir

S αir
−TrD̂i

Sαi‖22 + λ‖αi‖1 (5)

Here, we choose β1 = β2 = β3 = β4 = β, the
optimization (5) can be transformed into

min
αi

‖X̃− D̃αi‖22 + λ‖αi‖1 (6)

where

D̃ = [(D̂i
P )T , β(TuD̂iu

S )T , β(TdD̂
id

S )T ,

β(TlD̂
il

S )T , β(TrD̂ir

S )T ]T

X̃ = [pT
i , β(TdD̂iu

S αiu
)T , β(TuD̂

id

S αid
)T ,

β(TrD̂
il

Sαil
)T , β(TlD̂ir

S αir
)T ]T

The coefficient αi can be updated by Lasso [2].
Proposition 1 If αi is updated by Eq.(6), then the en-
ergy function (2) with the updated αi decreases.
Proof. Denote Et to be the energy function (2) at the t-
th iteration, αt

i, α
t
iu

, αt
id

, αt
il
, αt

ir
are coefficients in the

t iteration, Et
i to be the following energy function

Et
i = ‖pi − D̂P αt

i‖22
+β2‖TdD̂iu

S αt
iu
−TuD̂Sαt

i‖22
+β2‖TrD̂

il

Sαt
il
−TlD̂Sαi

t‖22
+β2‖TuD̂

id

S αt
id
−TdD̂Sαi

t‖22
+β2‖TlD̂ir

S αt
ir
−TrD̂Sαt

i‖22 + λ‖αt
i‖1(7)

and Ēt
i = Et − Et

i . Since αt+1
i is obtained by the

minimization of (7) with respect to αt
i, we have Et+1

i <

Et
i . Note that E

t+1

i = E
t

i, we have Et+1 = E
t+1

i +
Et+1

i < Et = E
t

i + Et
i .

The optimization will be iterated for randomly se-
lected ε-smooth violating image patches until no more
such violating patches exist or it exceeds the predefined
maximum iteration number.

3.2 Method Summary

Our smoothness-constrained face photo-sketch syn-
thesis using sparse representation algorithm can be
summarized in Algorithm 1, and the method can also
synthesize a face photo given a sketch drawn by an
artist, by simply switching roles of photos and sketches.
Remark 1: A simple method is adopted to enforce
inter-patch relationships by averaging the gray values
in the overlapped area between adjacent patches.
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Figure 2. Comparison between the sketch synthesis re-
sults. (a) photos; (b) sketches drawn by artists; (c) sketches by
method [4], which are copied from [8]; (d) sketches by method
[8]; (e) initial sketches without smoothness-constraint[1]; (f)
refined sketches by our method.

Algorithm 1 Smoothness-Constrained Face Photo-Sketch Synthe-
sis Using Sparse Representation

1: Input: the training set of face photos and the face sketches, and
a test face photo.

2: Output: a synthesized sketch for the test face photo.
3: For each patch i in the training set of photo and sketch, construct

the local coupled dictionary {D̂i
P , D̂i

S} by sparse coding[3].
4: Initialize the sketch image via sparse representation(Section 2).

For each photo patch i, compute its sparse representation coeffi-
cient αi with respect to D̂i

P by Eq. (1), and initialize the sketch
patch sj by D̂i

Sαi.
5: while no ε-smooth violating patch exists or it exceeds the pre-

defined maximum iteration number do
6: At iteration t, select for ε-smooth violating image patches in

the sketch.
7: if the j-th patch is ε-smooth violating then
8: we update αt

j and sj = D̂j
Sαt

j by solving the minimiza-
tion problem (6);

9: else
10: the sparse representation of sj keeps unchanged.
11: end if
12: end while
13: Reconstruct the sketch by stitching the estimated sketch patches.

4 Experiments

In our experiments, a face photo-sketch database
from the CUHK student database was used [7]. The
database contains 88 faces for training and 100 faces for
testing. For each face, a sketch by an artist and a photo
taken in the front pose are given. The feature vectors of
the photos and sketches are represented by the gray val-
ues inside the corresponding photo and sketch patches.

4.1 Face Sketch Synthesis

In our experiments, the size of all the face and sketch
images are 160 × 120. The size of image patch is
7 × 7, and the overlapping area for adjacent patches
is 5 × 7. The regularization parameters β and λ in
l1 minimization are set to be 1.0 and 0.1 respectively,
and the maximum iteration number in Algorithm 1 is
set to 100. In Fig. 2, we compare our method with
our previous method [1] and the state-of-the-art meth-
ods in [4][8]. The results by our method are close to

the sketches drawn by the artist. Although the synthe-
sis of human hair is challenging due to the variation in
the hair style, our method based on local dictionaries
can synthesize the hair region well. Our synthesized
sketches are less blurred and cleaner than the methods
[4], and the face structure as well as details in sketches
are synthesized well. In Fig.2 (e)(f), we compare the
synthesized sketches with and without the smoothness-
constraint. The results without the smoothness con-
straint [1] are noisy and have mosaic effect. The results
are improved greatly with the smoothness-constraint,
and our synthesize sketches are cleaner and have much
less mosaic effects. In Fig. 2 (d)(f), the results with
our method are compared with the results by the state-
of-the-art method [8]. We give more synthesized face
sketch results in Fig. 3. Moreover, our method can syn-
thesize a face photo with a sketch by switching roles of
photos and sketches.

5 Conclusion

We propose a face photo-sketch and sketch-photo
synthesis method that exploits the nature of sparse rep-
resentation as well as the smoothness prior of sketches
and photos. Efforts have been taken to build suc-
cinct coupled dictionaries for local image regions and
compute the sparse representation coefficient. In or-
der to exploit the local smoothness of synthesized face
sketches and photos, we propose an efficient convex
optimization approach to refine the initialized sketches
and photos by solving a sequence of small scale l1-norm
optimizations. Our method has advantages in that the
face sketches and photos can be synthesized by using
sparse representation as well as the smoothness prior
of synthesized images. Experiments show that the ob-
tained sketches and photos resemble the true sketches
and photos well.

Figure 3. Face sketch synthesis results using smoothness-
constrained face sketch synthesis method. The first row is
the face photos, the second row is the face sketches drawn
by artists, the third row is the synthesized face sketches.
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