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ABSTRACT
Automatic motion estimation of multiple depth cameras has
remained a challenging topic in computer vision due to its re-
liance on the image correspondence problem. In this paper,
spherical objects are employed to estimate motion parameters
between multiple depth cameras. We move a sphere sever-
al times in the common view of depth cameras. We fit the
spherical point clouds to get the sphere centers in each depth
camera system, and then introduce a factorization based ap-
proach to estimate motions between the depth cameras. Both
simulated and real experiments show the robustness and ef-
fectiveness of our method.

Index Terms— Depth cameras, motion estimation, sphere
object

1. INTRODUCTION

Multiple depth cameras is quite important in 3D reconstruc-
tion. The 3D data generated from a single depth camera
comes from a single direction oriented around the center of
the depth camera. This results in one-sided objects or peo-
ple. We have to move the depth camera in order to generate
the opposite side like in the Kinectfusion system[1], while
Kinectfusion is mainly designed for static scene modeling.
With multiple depth cameras, we can add the captured data
together and produce a more complete and temporal syn-
chronous scene.

In order to reconstruct a scene from the multiple depth
cameras , the system must be calibrated[2][3][4]. This in-
cludes internal calibration of each camera as well as relative
motion calibration between the cameras. Color camera cal-
ibration has been studied extensively. For depth sensors, d-
ifferent calibration methods have been developed depending
on the technology used. Several internal calibration methods
of depth camera calibration have been proposed in the Kinec-
t community, they are all plane-based methods, and most of
them are not fully automatic. Herrera made a comprehen-
sive calibration of all parameters of the camera pair[2]. Us-
ing a similar formulation, Zhang and Mikhelson calibrated
cameras with correspondences between the color and depth
images[5][6]. The intrinsic parameter of depth cameras(such
as Kinect) are calibrated during manufacturing. The calibrat-
ed parameters are stored in the devices internal memory and
are used by the official drivers to perform the reconstruction.

3D reconstruction and visual surveillance using a depth
camera network have imposed new challenges to camera mo-
tion calibration[7]. One essential problem is that current ap-
proaches for depth camera calibration using planes may not
be feasible since these objects may not be simultaneously vis-
ible by all the conventional cameras. Although 1D objec-

t (line object with markers) based method has great advan-
tage in the calibration of multiple perspective cameras[8][9],
it is infeasible for the motion estimation of depth cameras due
to the fact that they are often invisible in the depth image.
The depth camera consists of an infrared laser projector com-
bined with a monochrome imaging sensor, and 1D object is
too thin for depth camera to recover its depth and the marker-
s on it. Similarly, a popular method [10] in multiple camera
self-calibration can not be used for depth cameras. Sphere is
a widely available object, and a few calibration method us-
ing spheres were proposed in the field of omnidirectional and
perspective cameras[7][11], which are flexible and accurate.
In the field of depth camera, little attentions are paid to use
sphere objects to recover camera motions.

In this paper, we propose a new method to calibrate extrin-
sic parameters of multiple depth cameras by using a sphere
object, where minimal human interactions are required. Our
calibration method has the following advantages: 1) Auto-
matic motion estimation method. The method is automatic
and suitable for practice use. Our calibration method does not
need tedious correspondence selection as in previous depth
camera calibration methods. 2) The method is linear and easy
for implementation.

2. PRELIMINARY

The projection of a point from depth camera coordinates xd =
[xd, yd, zd]

T to depth image coordinates md = [ud, vd]
T is

obtained through the following equations[2][6]:
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where K is the intrinsic parameter matrix of depth camera,
fd = [fdu, fdv]

T are the focal lengths, p0d = [u0d, v0d]
T is

the principal point and sd is the skew parameter.
The 3D point can be recovered with its image coordinate

and the depth zd as follows:[
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3. ALGORITHM

We show how to recover motion parameters by aligning
sphere-centers under multiple depth camera systems (See



Fig. 1. Illustration of sphere calibration objects.

Fig. 1). We first detect sphere images, and then estimate the
sphere center with the point cloud of sphere images. The
sphere centers in each depth camera system are regarded
as correspondences, and we choose a robust factorization
method to get the motion parameters. We suppose that the
captured scene has a dominant plane such as a floor or a desk,
and the intrinsic parameters K of depth camera are known.

3.1. Sphere Image Detection and Sphere Center Estima-
tion

The 2D image of a sphere contour is an ellipse, and Hough
transform can be used for robust ellipse detection. In our
problem, we use the method [12] for ellipse detection. This
method takes the advantages of major axis of an ellipse to find
ellipse parameters fast and efficiently. Based on the detected
sphere contour images, we fit the sphere with the point clouds
by lifting the pixels within the sphere contour images to 3D,
and then recover the sphere center.

The procedures of our approach are shown as follows (See
Fig. 2): 1) recover 3D point cloud from a depth image by (2);
2) fit the dominant plane with RANSAC, and keep the pixels
in the depth image, the reconstructed points of which are on
the same side of the plane as the depth camera and within a
feasible distance range to the plane. The depths of the rest
pixels are all set to zeros; 3) use the method in [12] to detect
ellipses with the constraints that the length of major axis is
within 50 and 200 pixels, and the aspect ratio is above 0.9;
finally, we use the recovered 3D points pixels within the de-
tected sphere contour image to fit the sphere with the Taubin’s
method [13][14] and get its sphere center.

Fig. 2. Illustration of the sphere image detection. (a) RGB
image. (b) Depth image. (c) Processed depth image by re-
moving infeasible depth pixels. (d) Detected ellipse in the
depth image.

Remark 1: If multiple ellipses are detected, we may choose
the ellipse with the smallest sphere fitting error.

3.2. Motion Estimation

In this section, we show how to recover motion parameter-
s of multiple depth cameras from spheres’ centers by using
a factorization method for 3D point sets. The factorization
method is advantageous over other methods in that it treats
each view equally and recover all the camera motion matrices
simultaneously[15][16].

Denote Oi,j(i = 1, ...,m, j = 1, ..., n) to be the recov-
ered j-th 3D coordinates of spherical centers in the i-th depth
camera coordinate systems respectively.

Estimate translations. Each translation ti is computed
as the centroid of sphere centers in the i-th camera coordinate
system

ti =
1

n

n∑
j=1

Oi,j (3)

Centre the data. Centre the sphere centers in each depth
image by expressing their coordinates with respect to the cen-
troid:

Õi,j = Oi,j − ti. (4)

Hereafter, we work with these centered coordinates.
Estimate rotations. Construct the 3m × n measurement

matrix W from the centered data shown as in Eq. (5), com-

pute its SVD W = UΛVT .

Since we have Õi,j = R̂iÔj , we get a factorization of W
as follows.
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where Q is a motion matrix, S is a shape matrix, and Ôj is
an estimated sphere center in the world coordinate system.

From a measurement matrix W, we can compute its rank-
3 decomposition W3m×n = Q3m×3S3×n by SVD. However,
this decomposition is not unique as any nonsingular matrix
T3×3 can be inserted between Q and S to obtain a new valid

factorization as W = Q̂Ŝ = (QT)(T−1S).
Due to the orthogonality constraints of rotation matrix, we

enforce T with the following constraints(k = 1, ...,m):

Q[3k+1:3k+3,:]T(Q[3k+1:3k+3,:]T)T =

Q[3k+1:3k+3,:] TTT︸ ︷︷ ︸
Ω

QT
[3k+1:3k+3,:] = I3×3

(6)

where Ω3×3 = TTT . These equations are linear in terms of
elements of the symmetric matrix Ω3×3, and then we can get
homogenous linear equations of Ω3×3:

Avec(Ω) = 0 (7)

where vec(Ω) can be estimated with singular vector decom-
position(SVD).



After Ω3×3 is obtained, T can be recovered by SVD of
Ω3×3 as follows

Ω = UΛUT = UΛ1/2Λ1/2UT = UΛ1/2(UΛ1/2)T (8)

where T = UΛ1/2. Thus the rotation matrices {R̂i}mi=1 can
be recovered by QT, and the sphere centers under multiple
sphere motions can be recovered by T−1S. The signs of
vec(T) are adjusted to ensure that the resulting matrices QT
have positive determinant.

For our comparison convenience of the simulated exper-
iments Section 4.1, we choose the rotation matrix and trans-
lation vector of the first camera as [I3×3,03×1]. Then the
rotation matrices and translation vectors can be transformed
as follows:

R̄i = R̂iR̂
T
1

t̄i = −R̂iR̂
T
1 t1 + ti

If the sphere centers may not be detected in all images,
some of the elements of W may be unknown, which is the
missing data problem. This problem can be handled with the
methods[10].
Remark 2: If the sphere centers during movements are
collinear, there are infinitely many rotations and reflections
solutions. Therefore, this is the degeneracy configuration of
our method.

3.3. Complete Algorithm

An outline of our algorithm is summarized as follows:
Input: images of sphere objects by at least three motions.
Output: motion parameters of multiple depth cameras,
{R̄i, t̄i}mi=1.

1. For each sphere movement j, detect the sphere image
Ei,j on the image of depth camera i, and lift the pixels
within each sphere contour image to 3D point clouds
Si,j(i = 1, ...,m, j = 1, ..., n);

2. Estimate the sphere centers under a depth camera coor-
dinate system i with {Si,j}nj=1, use RANSAC to re-

move outliers of sphere center correspondences, and
then put the extraction into a set Oi,j(i = 1, ...,m, j =
1, ..., n);

3. Use the sphere center sets Oi,j(i = 1, ...,m, j =
1, ..., n) to estimate the depth camera motions {R̄i, t̄i}mi=1.

4. EXPERIMENTS

4.1. Simulated Experiments

We perform a lot of simulations with six cameras as shown
in Fig. 3. In the simulation, the intrinsic and extrinsic pa-
rameters of the simulated depth cameras are known, and the
image resolutions are of 640 × 480. The rotation matrix and
translation vector of the first camera is set to [I3×3,03×1].
We move a 3D sphere with 162 points of uniform grid ten
times, and project it on six depth image planes. The value
of each pixel in the depth image is its depth value. Gaussian
noise with mean 0 and standard derivations σ are added to
the depth values, and the noise level σ increases from 0mm to
10mm in steps of 2mm. At each noise level, 100 independent

trials are performed. The estimated camera motion parame-
ters are compared with the ground truth, and RMS errors are
measured. The errors of the cameras’ Euler angles and trans-
lations relative to the first camera are shown in Fig. 4. The
errors increase almost linearly as the noise level increases.
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Fig. 3. The synthetic experimental setup with six cameras and
a sphere object.

0 2 4 6 8 100

1

2

3

4

5

6

Noise level (mm)

R
el

at
iv

e 
er

ro
rs

(%
)

T2
T3
T4
T5
T6

(a)

0 2 4 6 8 100

0.5

1

1.5

2

Noise level (mm)

R
M

S
 e

rr
or

s 
(d

eg
)

ψ2
θ2
φ2

(b)

0 2 4 6 8 100

0.5

1

1.5

2

2.5

Noise level (mm)

R
M

S
 e

rr
or

s 
(d

eg
)

ψ3
θ3
φ3

(c)

0 2 4 6 8 100

0.5

1

1.5

Noise level (mm)

R
M

S
 e

rr
or

s 
(d

eg
)

ψ4
θ4
φ4

(d)

0 2 4 6 8 100

0.5

1

1.5

2

Noise level (mm)

R
M

S
 e

rr
or

s 
(d

eg
)

ψ5
θ5
φ5

(e)

0 2 4 6 8 100

0.5

1

1.5

2

Noise level (mm)

R
M

S
 e

rr
or

s 
(d

eg
)

ψ6
θ6
φ6

(f)

Fig. 4. The errors of six simulated cameras extrinsic parame-
ters.

4.2. Real Experiments

In this section, we describe a real dataset consists of four
Kinect cameras as shown Fig. 5(a), and the effective cap-
ture volume is approximately 70×60×50 cm (a virtual cube
above the white square in Fig. 5(a)). The depth cameras are
with an image resolution of 640×480 pixels. Although many
delicate approaches could be applied, we simply synchronize



the cameras by multiple thread techniques. The four depth
cameras locate on a rough circle, looking inward at a com-
mon free space. The angle of nearby two Kinects is about 90
degrees, so that the active lights of Kinects are not interfering
severely with each other.

We use a basketball as the calibration object and move the
sphere 27 times in the common view of depth cameras. The
camera pose estimation results are shown in Fig. 5(b).
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Fig. 5. (a) Camera setup. (b) Camera pose estimation results.

We use 3D cube reconstruction to verify the motion es-
timation results (See Fig. 6). Each planes of the cube(
black&white patterns on a glass cube) are fitted with recon-
structed 3D points, and we compute the angles between each
two nearby planes, {θi}7i=1 (the ground truth is 90 degrees).
The average angle θ and standard deviation σθ are computed
as shown in Table 1. We see that the results with our method
are a little better than those with planar-based method.

Table 1. Reconstruction errors with the estimated camera mo-
tion results by our method and the planar-based method.

Method θ(degrees) σθ (degrees)
Our method 89.8 1.1

Planar-based method 89.7 1.5

We also use the calibrated multiple depth cameras to re-
construct 3D objects, in which only the points within the ef-
fective capture volume are kept. Our datasets include ”kettle”,
”milk box”, ”shoe”, ”plant”, ”arm” and ”teabox”. The recon-
structed results are shown in Fig. 7.

5. CONCLUSION

We propose a new method to calibrate multiple depth cameras
by moving a sphere. It is automatic to recover the depth cam-
era motions, linear, and easy for implementation. Both statis-
tical evaluation and real data verify the feasibility and power
of this calibration approach. We also show that our method is
suitable for 3D reconstruction application with multiple depth
cameras.
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Fig. 6. Cube reconstruction results. Each row shows an re-
construction example with color images and three views of
reconstructed point clouds.

Fig. 7. Reconstruction results. Each row shows an recon-
struction example with color images and three views of re-
constructed point clouds.
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