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a b s t r a c t

Hybrid central catadioptric and perspective cameras are desired in practice, because the hybrid camera
system can capture large field of view as well as high-resolution images. However, the calibration of
the system is challenging due to heavy distortions in catadioptric cameras. In addition, previous calibra-
tion methods are only suitable for the camera system consisting of perspective cameras and catadioptric
cameras with only parabolic mirrors, in which priors about the intrinsic parameters of perspective cam-
eras are required. In this work, we provide a new approach to handle the problems. We show that if the
hybrid camera system consists of at least two central catadioptric and one perspective cameras, both the
intrinsic and extrinsic parameters of the system can be calibrated linearly without priors about intrinsic
parameters of the perspective cameras, and the supported central catadioptric cameras of our method
can be more generic. In this work, an approximated polynomial model is derived and used for rectifica-
tion of catadioptric image. Firstly, with the epipolar geometry between the perspective and rectified cata-
dioptric images, the distortion parameters of the polynomial model can be estimated linearly. Then a new
method is proposed to estimate the intrinsic parameters of a central catadioptric camera with the param-
eters in the polynomial model, and hence the catadioptric cameras can be calibrated. Finally, a linear self-
calibration method for the hybrid system is given with the calibrated catadioptric cameras. The main
advantage of our method is that it cannot only calibrate both the intrinsic and extrinsic parameters of
the hybrid camera system, but also simplify a traditional nonlinear self-calibration of perspective cam-
eras to a linear process. Experiments show that our proposed method is robust and reliable.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Catadioptric cameras have the prominent property of wide view
angle, and they have been used in 3D reconstruction [30,22,19,11],
robot navigation [7,23], virtual reality [24] and visual surveillance
[8,29,26]. However, catadioptric cameras typically capture low-
resolution images, which cannot meet the requirements in various
applications. Perspective cameras can capture high-resolution
images, but they have limited view angles. To overcome such dis-
advantages, the hybrid of catadioptric and perspective cameras is
desired [29,33,25,8]. For example, in visual surveillance, catadiop-
tric cameras can be used to detect moving objects, and active pan-
tilt-zoom cameras (a perspective camera with a pan-tilt-zoom
unit) can view the detected objects in detail [27]. However, the cal-
ibration of the hybrid camera system is challenging due to the hea-
vy distortion in catadioptric cameras. In this paper, we aim to self-
ll rights reserved.

by Antonis Argyros.
calibrate hybrid central catadioptric and perspective camera
system.

Representative studies on the calibration of hybrid cameras
have appeared in recent years, and they can be summarized into
two categories:

(1) Methods based on part of information about radial distor-
tion, intrinsic parameters or scene information. Micusik
et al. [22] proposed a 3D metric reconstruction method from
uncalibrated omnidirectional image. In this work, the intrin-
sic parameters were obtained via epipolar constraint, which
was solved as a Quadratic Eigenvalue Problem (QEP), and
then this calibration information was used for metric recon-
struction. Barreto and Danilidis [2] proposed a practical
approach for calibrating multiple cameras with radial distor-
tion. The approach used the Fitzgibbon’s division model [13],
and could simultaneously calibrate the projection matrices
and radial distortion. Chen and Yang [9] calibrated a hybrid
camera network, which consisted of catadioptric and per-
spective cameras. The coordinates of a few 3D control points
were required. Sturm [29] proposed a pioneer work on

http://dx.doi.org/10.1016/j.cviu.2012.02.003
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multi-view relations between perspective cameras and
paracatadioptric system with an affine camera, while the
method required prior knowledge on intrinsic parameters
of the perspective cameras. The hybrid camera relations pre-
sented in [29] were later extended to cameras with lens dis-
tortion due to the similarities between the para-catadioptric
and division models by Barreto and Daniilidis [3], and the
epipolar relations concerning hyper-catadioptric cameras
were also presented. Svoboda et al. [31] proposed an effec-
tive self-calibration approach of perspective camera net-
works using point object. However, it was designed for
perspective cameras not for omnidirectional cameras with
heavy radial distortions. Wang et al. [37] proposed a flexible
multi-camera calibration method using 1D objects under-
taking general rigid motion, and the method was designed
for multiple perspective cameras.

(2) Methods concerning only the extrinsic parameters of cam-
eras [14,25]. Ramalingam et al. [25] proposed a generic
structure-from-motion framework to reconstruct scenes by
cameras of different types, where the intrinsic and distortion
parameters of the cameras were precalibrated. Ying and Hu
used a sphere to calibrate the extrinsic parameters of catadi-
optric cameras [36]. Bazin et al. [5] proposed an effective
motion estimation by decoupling rotation and translation
in calibrated catadioptric vision, which estimated the abso-
lute attitude (roll and pitch angles) at each image without
error accumulation. A recent study on hybrid camera sys-
tems is reported in [4], which combines an automatic point
matching step with the epipolar geometry extraction and 3D
reconstruction. For the case of multiple perspective cameras,
Sturm and Triggs [28] proposed several robust factorization
algorithms that solved for the shape and motion parameters
under both affine and perspective camera models.

In this paper, we propose a method to calibrate hybrid central
catadioptric and perspective cameras. An approximated polyno-
mial model of the catadioptric camera is derived and used for rec-
tification of catadioptric images, and then we use epipolar
geometry to estimate the distortion parameters in the polynomial
model. Thus, we can calibrate the catadioptric cameras easily by
using the derived relationship between the intrinsic parameters
and distortion parameters in the polynomial model of central cata-
dioptric cameras. Then, a self-calibration method for the hybrid
camera system is given. It is shown that if the hybrid camera sys-
tem consists of at least two central catadioptric cameras and one
perspective camera, both the intrinsic and extrinsic parameters
of the system can be calibrated linearly. The primary advantage
of using self-calibration approach for hybrid camera system lies
in its flexibility to calibrate the hybrid camera system at any place
if a sufficient number of image correspondences are available. It is
particularly noteworthy that our self-calibration approach does not
rely on specific scene structure such as colinearity of points or
straightness of lines [17]. While it does require image correspon-
dences between multiple cameras, this is a small price to pay for
its flexibility of use.

Our main contributions can be summarized as follows:

(1) A new method to estimate the intrinsic parameters of a cen-
tral catadioptric camera under the polynomial model is
introduced. An approximated polynomial model for central
catadioptric camera is derived, and applied to the calibration
of central catadioptric camera. With the polynomial model,
the intrinsic parameter calibration problem for catadioptric
camera can be converted to an easy distortion parameter
estimation problem. Once the distortion parameters in the
polynomial model are obtained, the intrinsic parameters of
catadioptric camera can be explicitly computed. In addition,
a classic calibration method for hybrid camera system [29] is
generalized, and our method supports central catadioptric
cameras with more generic mirrors.

(2) A nine-point method to estimate the distortion parameters
under the polynomial model is proposed. Radial distortion
solvers with less correspondences are important for autocal-
ibration, which decreases the sampling complexity of RAN-
SAC during the automatic point matching process [16,18].
Previous work used Gröbner basis to solve the minimal
problems, while the generator of Gröbner basis solvers is
not a trivial task. We proposed a nine-point calibration
method of radial distortion. Our method is not a minimal
solver for the problem, while it has the merit of easy imple-
mentation. The method only needs to solve equations in two
unknown variables (two second order polynomials), and
avoids solving complex third order polynomials equation
by the singularity of fundamental matrix in the minimal sol-
ver. In addition, it can be solved easily with the solve func-
tion in Symbolic Math Toolbox of Matlab.

(3) A linear method to self-calibrate perspective cameras in the
hybrid camera system is proposed, which does not require
prior knowledge on the intrinsic parameters of perspective
cameras. However, traditional self-calibration methods of
perspective cameras involve either unstable nonlinear pro-
cess without prior knowledge on camera intrinsic parame-
ters [16], or linear calibration process with prior
knowledge on cameras (e.g. aspect ratio, skew factor or prin-
cipal point) [20].

This paper is organized as follows. Preliminaries are introduced
in Section 2. Section 3 elaborates on our calibration method for hy-
brid central catadioptric and perspective cameras. Section 4 re-
ports simulated and real experiments. Finally, Section 5
concludes this paper.

2. Preliminary

In this paper, the sign � between vectors denotes the equality
up to a nonzero scale.

2.1. Division model

Fitzgibbon [13] proposed a radial division model L1ðu;v ; lÞ ¼
1þ

Pl
i¼1jiðu2 þ v2Þi for omnidirectional cameras, where ji

(i = 1, . . . , l) are the radial distortion parameters, (u,v) is the
inhomogeneous coordination of a point on a distorted image
relative to the radial distortion center. The homogenous coordinate
of (u,v) after rectification can be computed with division operation
by

u

v
L1ðu;v ; lÞ

0B@
1CA �

u
L1ðu;v;lÞ

v
L1ðu;v;lÞ

1

0B@
1CA ð1Þ

Therefore, this model is called division model, and it is widely
used in the calibration of omnidirectional cameras [22,33,32,18].

2.2. Central catadioptric camera

Geyer and Daniilidis [15] proposed a generalized image forma-
tion model for central catadioptric camera (see Fig. 1). Under the
view sphere coordination system O � xyz, a 3D point X is projected
to a point Xs on a unit sphere at the viewpoint O by Xs ¼ RXþt

kRXþtk, then
projected to a point m = (u,v,1)T on the image plane P by a virtual
pinhole camera through the perspective center Oc. P is perpendic-



Fig. 1. Image formation of a central catadioptric camera.

X. Deng et al. / Computer Vision and Image Understanding 116 (2012) 715–729 717
ular to the line defined by the viewpoints O and Oc. The angle u is
called the view angle of m. The image formation process can be
explicitly expressed as follows [39]:

km ¼ KðXs þ ð0;0; nÞTÞ ð2Þ
K ¼
rf s u0

0 f v0

0 0 1

0B@
1CA; Xs ¼ RXþ t

kRXþ tk ;

k ¼
nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 �mT K�T K�1mðn2 � 1Þ

q
mT K�T K�1m

ð3Þ

where (R, t), called the extrinsic parameters, is the rotation and
translation which relates the world coordinate system to the view
sphere coordination system O � xyz, and K is the camera intrinsic
matrix, with f the focal length, r the aspect ratio, s the skew factor
and p = (u0,v0,1)T is defined as the homogenous coordination of
the principal point. n is usually called as the mirror parameter,
which is the distance from O to Oc. If n = 1, the used mirror is a
paraboloid (i.e. the camera is paracatadioptric). If 0 < n < 1, the mir-
ror is an ellipsoid or a hyperboloid (i.e. the camera is hypercatadiop-
tric). Since the calibration of a catadioptric camera with n = 0 is the
same with that of a pinhole camera, in this work we only concen-
trate on the calibration of central catadioptric camera with
0 < n 6 1.

For the revolution conic section mirror, the mirror parameter n
satisfies [35,1]

n ¼ 2e
1þ e2 ð4Þ

where e is the eccentricity of the conic. The relationship between
eccentricity e and the mirror parameter n for different types of cen-
tral catadioptric cameras is shown in Table 1 [35]. Generally speak-
ing, the mirror parameter n can be computed easily with the
provided eccentricity e from manufactures [1,15,12]. Therefore, n
is assumed to be known in this paper.

For a central catadioptric camera, the principal point can be eas-
ily calibrated using the center of the bounding ellipse [13,35,12] or
Table 1
The relationship between eccentricity e and mirror parameter n.

Ellipsoidal Paraboloidal Hyperboloidal Planar

e 0 < e < 1 e = 1 e > 1 e ?1
n 0 < n < 1 n = 1 0 < n < 1 n = 0
line images [32,39,38], and then the origin of the image can be
translated to p by a linear transformation:

Tp ¼
1 0 �u0

0 1 �v0

0 0 1

0B@
1CA ð5Þ

Hence, the image coordination m can be translated to ~m by
~m ¼ Tpm ¼ ðu� u0;v � v0;1ÞT , and p is translated to ~p ¼ ð0;0;1ÞT .

Denote eK as

eK ¼ rf s 0
0 f 0
0 0 1

0B@
1CA ð6Þ

The image formation process (2) can be described by

k ~m ¼ eKðXs þ ð0;0; nÞTÞ ð7Þ

The matrix eK�T eK�1 is in the following form:

k1 k2=2 0
k2=2 k3 0

0 0 1

0B@
1CA ð8Þ

where

k1 ¼ 1=ðr2f 2Þ; k2 ¼ �2s=ðr2f 3Þ; k3 ¼ ðr2f 2 þ s2Þ=ðr2f 4Þ ð9Þ
In this paper, we assume the principal point of catadioptric

camera is precalibrated using the center of the bounding ellipse
like in [39]. Hereafter, denote u , u� u0; v , v � v0; m , ~m and
p , ~p for simplicity.

2.3. Projective reconstruction by factorization

Suppose there are N perspective cameras Pi, i = 1, . . . , N and M
3D points Xj = (Xj, Yj, Zj, 1)T, j = 1, . . . , M. The image coordinates
are represented by mij = (uij, vij, 1)T. The image formation process
can be described as follows:
kijmij ¼ PiXj ð10Þ
where kij is a non-zero scale factor, commonly called as the projec-
tive depth.

We stack Eq. (10) of all the cameras into a matrix W3N�M, which
can be factorized as follows:

k11m11 k12m12 . . . k1Mm1M

k21m21 k22m22 . . . k2Mm2M

. . . . . . . . . . . .

kN1mN1 kN2mN2 . . . kNMmNM

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W3N�M

¼
P1

. . .

PN

0B@
1CA

|fflfflfflffl{zfflfflfflffl}
M3N�4

ðX1; . . . ;XMÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
S4�M

ð11Þ

W3N�M ¼M3N�4S4�M ð12Þ
where W is the scaled measurement matrix, M3N�4 ¼

PT
1;P

T
2; . . . ;PT

N

� �T
is the projective matrix, and S4�M = (X1, . . . ,XM) is

the projective shape matrix. We use Sturm and Triggs’ method
[28] for the computation of {kij}, and recovery of projective
reconstruction fPigN

i¼1 by factorizing W. Obviously, the factorization
in (11) is a projective reconstruction up to a 4 � 4 homography
matrix H4�4. That is, W can also be factorized as W ¼
ðM3N�4H4�4Þ H�1

4�4S4�M

� �
. In order to get the Euclidean reconstruc-

tion, metric constraint should be used to recover the 4 � 4 homog-
raphy matrix H [16].

3. Calibration method

In this paper, we assume the principal point of catadioptric
camera is precalibrated using the center of the bounding ellipse
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like in [35,39], and the origin of image coordination is translated to
the principal point (see Section 2.1) i.e. p = (0,0,1)T.
3.1. Polynomial approximations for catadioptric camera models

In this section, we derive polynomial approximation model for
central catadioptric camera, which will be applied to the calibra-
tion of central catadioptric camera in Section 3.2.

With Eq. (7), the following equation can be derived:

m� n
k

p|fflfflfflfflffl{zfflfflfflfflffl}
mu

¼

u

v
1� nmTeK�TeK�1m

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þð1�n2ÞmTeK�TeK�1m

p
0BB@

1CCA � eKðR; tÞ X
1

� �
ð13Þ

Comparing Eq. (13) with the imaging model of perspective cam-
era (see Ref. [16]), we find that mu ¼m� n

k p is a rectification for
m = (u,v,1)T on the catadioptric image, which is the image of the
space point X (or Xs) under a pinhole camera with the optical cen-
ter at the view sphere center O.

Let l ¼mT eK�T eK�1m� 1 ¼ k1u2 þ k2uv þ k3v2. Then the third
component in mu can be represented by l as

f ðlÞ ¼
1� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� n2Þl

q
1� n2 ð14Þ

Therefore, mu in Eq. (13) can be simplified as

mu ¼
u

v
f ðlÞ

0B@
1CA ð15Þ

By Taylor expansion of f(l) at l = 0, we have
f ðlÞ ¼ 1
1þ n

þ n
X1
n¼1

ð�1Þn�1ð1� n2Þn�1

2nn!

Yn

i¼1

ð2i� 3Þln; l 2 0;
1

1� n2

� �� �
ð16Þ

Multiply (1 + n) to mu in Eq. (15), replace l with
k1u2 + k2uv + k3v2 in (1 + n)f(l), and omit items of l with more than
l orders, then we can obtain an lth order series as follows:
eLðu;v ; lÞ ¼ 1þ
Xl

p¼1

X
iþj¼2p;

i;jP0

bijuiv j ð17Þ

where

bij ¼ ð�1Þp�1nð1þ nÞð1� n2Þp�1ap

X
m;nP0;2mþn¼i;
ðmþnÞ6p

p!km
1 kn

2kp�m�n
3

m!n!ðp�m� nÞ! ;

ðiþ j ¼ 2pÞ ð18Þ

k1, k2, k3 in bij are defined in Eq. (9), and ap ¼
Qp

i¼1ð2i� 3Þ=ð2pp!Þ.
The image rectification process in (15) is equivalent to the

following:

muðcÞ ¼ ðð1þ nÞu; ð1þ nÞv; eLðu;v ; lÞÞT ; ðl!1Þ: ð19Þ

Hence, we have the following proposition, by which the intrin-
sic parameters of a central catadioptric camera can be computed
with the distortion parameters b20, b11, b02 of the model eLðu;v ; lÞ.
Proposition 1. For a central catadioptric camera with the principal
point p = (0,0,1)T and mirror parameter n(0 < n 6 1), the parameters
in (8) can be computed by k1 ¼ � 2b20

nðnþ1Þ ; k2 ¼ � 2b11
nðnþ1Þ, and

k3 ¼ � 2b02
nðnþ1Þ. Thus, the intrinsic matrix can be computed as follows:

eK ¼ rf s 0
0 f 0
0 0 1

0B@
1CA ð20Þ

where f ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1

4k1k3�k2
2

q
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k1k3�k2

2

p
2k1

; s ¼ � k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ð4k1k3�k2

2Þ
p .

Proof. With Eqs. (17) and (18), we have
b20 ¼ � nðnþ1Þ

2 k1; b11 ¼ � nðnþ1Þ
2 k2; b02 ¼ � nðnþ1Þ

2 k3, and then k1, k2,
k3 can be expressed by n, b20, b11, b02 as in the above.

With Eqs. (8) and (9), eK�T eK�1 can be computed by

k1 k2=2 0
k2=2 k3 0

0 0 1

0B@
1CA ¼

1
f 2r2 � s

f 3r2 0

� s
f 3r2

s2

r2 f 4 þ 1
f 2 0

0 0 1

0BB@
1CCA ð21Þ

And then, we have

k1 ¼
1

f 2r2 ð22Þ

k2

2
¼ � s

f 3r2 ð23Þ

k3 ¼
s2

r2f 4 þ
1
f 2 ð24Þ

With Eqs. (22) and (23), we have

r2 ¼ 1
k1f 2 ð25Þ

s ¼ � k2

2k1
f ð26Þ

By substituting (25) and (26) into (24), we have

k3 ¼
k2

2

4k1
þ 1

f 2 ð27Þ

and then the focal length f can be recovered by

f ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

4k1k3 � k2
2

s
ð28Þ

Finally, r, s can be recovered with the obtained f by Eqs. (25) and
(26). h

Proposition 1 is important for our proposed calibration method
of central catadioptric camera, which will be discussed in
Section 3.2.

The series eLðu;v ; lÞ (see Eq. (17)) does not assume prior knowl-
edge about the aspect ratio r, skew factor s and mirror parameters
n. Inspired by the formation of eLðu;v ; lÞ, we generalize the division
model (see Eq. (1)) into a more generic polynomial model as
follows:

Lðu;v ; lÞ ¼ 1þ
Xl

p¼1

X
iþj¼2p
i;jP0

cijuiv j ð29Þ

Hereafter, we call L(u,v, l) as the lth-order polynomial division mod-
el for central catadioptric cameras, and c = (cij) are the distortion
parameters to be calibrated.

Inspired by the image rectification process (19), the image point
m = (u,v,1)T can be rectified with the polynomial division model
L(u,v, l) as follows:
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m̂uðcÞ ¼ ðð1þ nÞu; ð1þ nÞv ; Lðu;v ; lÞÞT ð30Þ

For a central paracatadioptric camera (n = 1.0), the algebraic for-
mation of the 1st-order polynomial division model L(u,v,1) is the
same as that of the true image rectification model (17) with
l ?1, because the parameter bij(i + j > 2) for l > 1 is zero with
n = 1.0 (see Eq. (18)). Therefore, the 1st-order polynomial division
model is suitable for image rectification of the central paracata-
dioptric camera during camera calibration; for hypercatadioptric
cameras (0 < n < 1.0), the 1st-order polynomial division model is
a close approximation to the true image rectification model in
practice (see experiments in Section 4, with the 1st-order polyno-
mial model, fairly good results of intrinsic parameters in the cata-
dioptric cameras can be estimated.). Therefore, we use the 1st-
order model to rectify the catadioptric images.

In this paper, we use the polynomial model L(u,v, l) to approxi-
mate the true model eLðu;v ; lÞ of central catadioptric camera (see
Eq. (17)), and the corresponding parameters in the two models
are shown close in lots of our calibration experiments. With the
parameters {bij}, the ground truth intrinsic parameters of central
catadioptric cameras can be computed with Proposition 1. In the
experiments (see Section 4.1), the calibrated parameter cij in
L(u,v, l) is used to replace the parameter bij in Proposition 1, and
the estimated intrinsic parameters of the catadioptric cameras
are very close to the ground truth. Therefore, the parameter cij in
L(u,v, l) by our calibration method is close to the true coefficient
bij in eLlðu;v ; lÞ for central catadioptric cameras.

3.2. Intrinsic parameter calibration for central catadioptric cameras

In this section, we use epipolar geometry between the perspec-
tive and rectified central catadioptric images to estimate the distor-
tion parameters in the polynomial model, and then estimate the
intrinsic parameters of catadioptric camera by Proposition 1.

Since the eccentricity of the mirror in the catadioptric camera is
usually known, and the mirror parameter n can be obtained from
the eccentricity of the mirror by Eq. (4), the mirror parameter n in
our work is assumed to be known like in [15]. In this paper, the
skew factor s of central catadioptric cameras is assumed to be zero.

Epipolar geometry between the perspective and rectified cen-
tral catadioptric images is

mT
1Fm̂u2ðcÞ ¼ 0 ð31Þ

where mi = (ui,vi,1)T (i = 1,2) are the image correspondences on the
perspective and catadioptric images respectively, c = (cij) is the dis-
tortion parameters in the polynomial division model, m̂u2ðcÞ is a
rectification of m2 with (30) and c, F = (fij)3�3 is the fundamental
matrix. Assuming f33 – 0, and we set f33 = 1 like in [18].

Next, we will use the constraint (31) of c and F = (fij)3�3 to cal-
ibrate the distortion parameters in the polynomial division model.

Since the central catadioptric camera is skew-free (i.e. s = 0), we
can get b11 = 0 (see Proposition 1) and the distortion parameter c11

can be set to be zero (i.e. cij = 0). Therefore, we have

D1g ¼ 0 ð32Þ

where

D1 ¼ u1u2
2;u1v2

2;u1u2;u1v2;u1; v1u2
2; v1v2

2;v1u2; v1v2;v1;
	

u2
2;v

2
2;u2;v2;1



ð33Þ

g ¼ ðc20f13; c02f13; ð1þ nÞf11; ð1þ nÞf12; f13; c20f23; c02f23;

ð1þ nÞf21; ð1þ nÞf22; f23; c20; c02; ð1þ nÞf31; ð1þ nÞf32;1ÞT ð34Þ

where g is denoted as the vector g = (g1, g2, . . . , g15)T = (c20f13, c02f13,
(1 + n)f11, (1 + n)f12, f13, c20f23, c02f23, (1 + n)f21, (1 + n)f22, f23, c20, c02,
(1 + n)f31, (1 + n)f32,1)T.
The epipolar constraints give one equation with 15 monomials
(c20f13, c02f13, (1 + n)f11, (1 + n)f12, f13, c20f23, c02f23, (1 + n)f21,
(1 + n)f22, f23,c20, c02, (1 + n)f31, (1 + n)f32,1) and 11 variables (f11,
f12, f13, f21, f22, f23, f31, f32, c20, c02).

For a pair of correspondences, we can establish a set of homoge-
neous linear equations by piling up the vector D1. If we regard the
15 monomials in g as independent variables, then at least 14 cor-
respondences are required for calibration. In the following, we
use singular value decomposition (SVD) to compute c20, c02 and
F = (fij)3�3. It should be noted that the coordinates of image corre-
spondences should be normalized like in [16]. In Appendix A, we
derive a normalization approach for the distortion parameter esti-
mation problem of the hybrid camera system, which is inspired by
the method in [4].

Denote fgig
15
i¼1 to be the ith item in the monomials g, Cand(c20),-

Cand(c02) to be the sets with candidate solutions of c20, c02 respec-
tively. We can use SVD to estimate fgig

15
i¼1. Cand(c20) can be

computed by

Candðc20Þ ¼
g1

g5
;

g6

g10
;
g11

g15

� �
ð35Þ

and Cand(c02) can be computed by

Candðc02Þ ¼
g2

g5
;

g7

g10
;
g12

g15

� �
ð36Þ

From Eqs. (35) and (36), there are nine candidate solutions for
the combination of c20 and c02.

From Eqs. (22) and (24), we have k1 > 0, k3 > 0, and obtained
b20 ¼ � nðnþ1Þ

2 k1 and b02 ¼ � nðnþ1Þ
2 k3 are both negative (see in Propo-

sition 1). With the discussion in Section 3.1, we know that the
parameter cij of L(u,v, l) is close to the true coefficient bij ofeLlðu;v ; lÞ for the central catadioptric camera. Therefore, if there ex-
ist negative values in a candidate solution for c20, c02, then the can-
didate solution should be removed. In the rest candidate solutions,
we choose a pair of c20, c02 as the distortion parameter calibration
result, which can minimize the following cost function:

costðcÞ ¼
XM

q¼1

mT
1;qFm̂u2;qðcÞ

ðFm̂u2;qðcÞÞ2ð1Þ þ ðFm̂u2;qðcÞÞ2ð2Þ
ð37Þ

where c = (c20,c02), M is the number of correspondences, and
ðFm̂u2;qðcÞÞðiÞ is the ith element of Fm̂u2;qðcÞ. This cost function is
an evaluation to the epipolar cost in the perspective camera, which
is the sum square distance between the image point and the epipo-
lar line in the perspective camera.

Hence, the intrinsic parameters of a central catadioptric camera
can be estimated with the distortion parameters c = (cij) of the
polynomial model by Proposition 1. Our method is linear, because
the epipolar geometry relationship (31) gives rise to linear con-
straints on the distortion parameters of the polynomial model. In
sum, with the polynomial model, the intrinsic parameter calibra-
tion problem for catadioptric camera is converted to an easy dis-
tortion parameter estimation problem.

We would like to point out that the calibration method of cen-
tral catadioptric camera becomes invalid, if the mirror parameter n
is equal to 0.0. This is because the distortion parameters b20, b11,
b02 in L(u,v, l) (see Eq. (29)) will be zeros in the case of n = 0, and
the intrinsic parameters with the distortion parameters cannot
be computed with Proposition 1.

Remark 1. In Eq. (32), the distortion parameters are over-con-
strained, and distortion parameter estimation with the minimal
number of correspondences is possible with minimal problem
solvers such as [18]. It is well known that for standard uncalibrated
case without considering distortion, seven point correspondences
are sufficient to estimate the epipolar geometry. In Eq. (32), we
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have two more parameters, the distortion parameters {c20,c02}.
Therefore, nine point correspondences are sufficient to estimate
the unknown parameters (f11, f12, f13, f21, f22, f23, f31, f32, c20, c02). In
Appendix B, we give a nine-point solver for the distortion
parameter estimation problem.
Table 2
Intrinsic parameters of the four simulated cameras.

Camera f r s u0 v0

1 2100 2000
2100

5.0 512 512

2 1710 1700
1710

0.0 700 750

3 1800 1800
1800

0.0 750 810

4 1910 1900
1910

0.0 850 880
3.3. Calibration of the hybrid camera system

In this section, we provide a simplified derivation on how to cal-
ibrate the hybrid camera system without measuring coordinates of
3D points. We aim to calibrate both intrinsic and extrinsic param-
eters of the hybrid camera system with calibrated catadioptric
cameras, and we do not make assumptions on the intrinsic param-
eters of perspective cameras.

After the central catadioptric cameras are calibrated, the catadi-
optric images can be rectified to calibrated perspective images. The
calibration of the hybrid camera system is converted to a special
multi-perspective camera calibration problem, in which part of
the perspective cameras (i.e. calibrated central catadioptric cam-
eras) are calibrated, and the rest perspective cameras are
uncalibrated.

Firstly, Sturm and Triggs’ matrix factorization [28] is used for
recovery of projective reconstruction fPigN

i¼1; fXjgM
j¼1 with catadi-

optric and perspective cameras. For a central catadioptric camera,
we use the rectified image points with Eq. (30) for projective
reconstruction.

Secondly, we will get Euclidean reconstruction of the hybrid
central catadioptric and perspective camera system.

Denote bPi ¼ liKiðRi; tiÞ to be the Euclidean projection matrix of
the ith camera, li is a non-zero scale factor, and let the correspond-
ing intrinsic parameters to be Ki, the rotation matrix Ri and trans-
lation vector ti. The parameters Ki, Ri, ti are denoted as follows:

Ki ¼
rifi si u0i

0 fi v0i

0 0 1

0B@
1CA; Ri ¼

iT
i

jT
i

kT
i

0BB@
1CCA; ti ¼

txi

tyi

tzi

0B@
1CA

And thus, the Euclidean projection matrix bPi can be expressed
by [31]

bPi ¼
mxi Txi

myi Tyi

mzi Tzi

0B@
1CA ð38Þ

where mxi ¼ lirifii
T
i þlisij

T
i þ liu0iki; myi ¼ lifij

T
i þliv0ik

T
i ; mzi ¼

lik
T
i ; Txi ¼ lirifitxi þ lisityi þ liu0itzi; Tyi ¼ lifityi þ liv0itzi and Tzi =

litzi.
Define the 4 � 4 projective transformation H as H = (A4�3,B4�1),

and denote M3N�4 ¼ PT
1;P

T
2; . . . ;PT

N

� �T
and cM3N�4 ¼bPT

1;
bPT

2 . . . ; bPT
N

� �T
. Since M recovers the motion and structure up

to a 4 � 4 linear projective transformation H (i.e. cM ¼MH andbS ¼ H�1S), we have [31,16]cM ¼ MðA4�3;B4�1Þ ð39Þ
In order to upgrade the projective reconstruction fPigN

i¼1;

fXjgM
j¼1 to Euclidean reconstruction, the projective transformation

H = (A,B) should be recovered.
Firstly, The column vector B can be computed with linear least

squares solutions of linear system by Txi
Tzi

and Tyi

Tzi
[31].

Secondly, the matrix A can be linearly estimated as follows.
Multiplying the first three columns of cM in (39) with its trans-

posed matrix, we havecMð1:3ÞcMð1:3ÞT ¼MAAT MT ð40Þ
where cMð1:3Þ

i is the first three column of cMi.
Substituting M ¼ PT
1;P

T
2; . . . ;PT

N

� �T
and cM ¼ bPT

1;
bPT

2; . . . ; bPT
N

� �T

into (40), we havebPð1:3Þ
i

bPð1:3ÞT
i ¼ Pi AAT|ffl{zffl}

Q 4�4

PT
i ð41Þ

where bPð1:3Þ
i is the first three column of bPi; bPð1:3Þ

i
bPð1:3ÞT

i ¼
liKiRiðliKiRiÞT ¼ l2

i KiK
T
i , and Q = AAT is a 4 � 4 unknown symmet-

ric matrix.
Thus, we have

l2
i KiK

T
i ¼ PiQPT

i ð42Þ

Let us denote Ci ¼ PiQPT
i . With the intrinsic parameters Ki of

calibrated catadioptric cameras i, we can derive the following lin-
ear constraints on the matrix Q

Cið1;1Þ ¼ r2
i f 2

i þ s2
i þ u2

0i

	 

Cið3;3Þ

Cið2;2Þ ¼ f 2
i þ v2

0i

	 

Cið3;3Þ

Cið1;2Þ ¼ ðfisi þ u0iv0iÞCið3;3Þ
Cið1;3Þ ¼ u2

0iCið3;3Þ
Cið2;3Þ ¼ v2

0iCið3;3Þ

Since the origin of image coordinate systems for the catadiop-
tric cameras is transformed to the principal point and the catadiop-
tric cameras are assumed to be skew-free, we have u0i = v0i = 0,
si = 0.

Cið1;1Þ ¼ r2
i f 2

i Cið3;3Þ ð43Þ
Cið2;2Þ ¼ f 2

i Cið3;3Þ ð44Þ
Cið1;2Þ ¼ 0 ð45Þ
Cið1;2Þ ¼ 0 ð46Þ
Cið2;3Þ ¼ 0 ð47Þ

After some simple manipulations, we can rewrite the con-
straints (43)–(47) into a set of linear equations about Q, which
can be solved by using singular value decomposition (SVD). For
each central catadioptric camera, we have five linear equations of
the 10 unknown elements in Q. Therefore, Q can be estimated with
at least two central catadioptric cameras, which have been cali-
brated with the method in Section 3.2. The matrix A can be further
computed from Q by rank 3 matrix decomposition [16], thus the
matrix H = (A,B) can be recovered. With the transformation matrix
H, the projective reconstruction of the hybrid camera system
fPigN

i¼1; fXjgM
j¼1 can be upgraded to the Euclidean reconstruction

by fPiHgN
i¼1; fH

�1XjgM
j¼1.

Finally, for each camera i (perspective or catadioptric) in the hy-
brid camera system, the intrinsic parameter matrix Ki and the
extrinsic parameters (Ri, ti) of the ith camera can be extracted by
the RQ decomposition [16] from the Euclidean projection matrix
of the ith camera bPi ¼ PiH, and the scene points can be recovered
by bXj ¼ H�1Xj.

Remark 2. The above calibration process is linear without prior
knowledge about the intrinsic parameters of perspective cameras.
In contrast, traditional self-calibration methods for perspective
cameras either need to recover the plane at infinity, which



X. Deng et al. / Computer Vision and Image Understanding 116 (2012) 715–729 721
usually involve nonlinear process and lead to unstable numerical
computations [16], or need prior knowledge on intrinsic param-
eters (for example, the principal point, the aspect ratio and the
skew factor) to get linear constraints of the image of absolute
conic [20,16].
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Fig. 2. The relative errors of four cameras’ intrinsic parameters with 36 correspondences.
respectively. (b), (d), (f) and (h) The results with bundle adjustment.
3.4. Bundle adjustment

The above calibration results are obtained by minimizing an
algebraic distance, and they can be further refined through bundle
adjustment.
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(a), (c), (e) and (g) The linear calibration results of the 1st, 2nd, 3rd and 4th cameras
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Suppose M correspondences are captured across N camera
views. Denote Ipers to be the set of perspective cameras and Icata

the set of central catadioptric cameras. Denote bXq to be the qth
reconstructed 3D point, mpq the observed projection of bXq on the
pth view.

For the set of central catadioptric cameras Icata, we can refine
the parameters by minimizing the following function:

E1 ¼
X

p2Icata

XM

q¼1

mpq � �mðKp; np;Rp; tp; bXqÞ
 2

ð48Þ

where �mðKp; np;Rp; tp; bXqÞ is the projection of bXq on the pth view
with Eq. (2).

For the set of perspective cameras Ipers, we can refine the param-
eters by minimizing the following function:

E2 ¼
X

p2Ipers

XM

q¼1

mpq � �mðKp;Rp; tp; bXqÞ
 2

ð49Þ

where �mðKp;Rp; tp; bXqÞ is the perspective projection of bXq on the pth
view [16].

For the hybrid central catadioptric and perspective camera sys-
tem, the intrinsic and extrinsic parameters can be refined by min-
imizing the following cost function:

min E1 þ E2 ð50Þ

where the variables are fbXqjq ¼ 1; . . . ;Mg; fKp;Rp; tpjp 2 Icatag;
fKp;Rp, tpjp 2 Ipers}.

The nonlinear optimization problem can be solved with numer-
ical techniques such as Levenberg–Marquardt [16]. It requires an
initial values of decision variables. The intrinsic parameters of cen-
tral catadioptric cameras can be determined with the method in
Section 3.2, the intrinsic parameters of perspective cameras and
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Fig. 3. The errors of three catadioptric cameras’ rotation matri
the extrinsic parameters of all cameras and fbXqjq ¼ 1; . . . ;Mg can
be initialized with the method in Section 3.3.
3.5. Method summary

An outline of our self-calibration method for hybrid central
catadioptric and perspective cameras is summarized as follows:

Step 1: An approximated polynomial model is used for the rectifi-
cation of catadioptric images. For each pair of catadioptric
and perspective cameras, we establish the epipolar geom-
etry between the perspective and rectified catadioptric
images by (31) and (32), and the distortion parameters
of the polynomial model can be estimated by singular
value decomposition (SVD) and equations (35) and (36).

Step 2: For each central catadioptric camera, the intrinsic param-
eters can be recovered with the estimated distortion
parameters of the polynomial model and Proposition 1.

Step 3: Self-calibrate the hybrid camera systems with the intrinsic
parameters of calibrated central catadioptric cameras (see
Section 3.3), and recover the intrinsic parameters of per-
spective cameras as well as extrinsic parameters of all
the cameras.

Step 4: Refine all parameters by minimizing the nonlinear cost
function (50) with numerical techniques such as Leven-
berg–Marquardt.

4. Experiments

In both simulated and real experiments, no prior knowledge on
the intrinsic parameters of perspective cameras is used.
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ces and normalized translations with 36 correspondences.



X. Deng et al. / Computer Vision and Image Understanding 116 (2012) 715–729 723
4.1. Simulated experiments

We use four simulated cameras, the first one is a perspective
camera, and the other three cameras are central catadioptric
cameras with the mirror parameters n = 0.96, 0.98, 1.00
respectively. The intrinsic parameters of the simulated cameras
are in Table 2. Simulated 3D points are projected onto the
image planes, and the image correspondences are used for
calibration.
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Fig. 5. The errors of perspective intrinsic parameters with our method and with the
method by the reconstructed scene points via Direct Linear Transformation (DLT).
(For interpretation of the references to colour in this figure the reader is referred to
the web version of this article).
4.1.1. Noise influence
Simulated 36 3D points are projected onto the image planes.

Gaussian noise with mean 0 and standard deviation ranging from
0 to 1 pixel at the step 0.2 pixels is added to image points. For cen-
tral catadioptric cameras, the mirror parameter n and principal
points are assumed to be known. For each noise level, 200 indepen-
dent trails are performed. Here, the relative errors of intrinsic
parameters with respect to f are measured, which was suggested
by Triggs [34]. Relative errors of the intrinsic parameters with lin-
ear and nonlinear estimations are given in Fig. 2. Errors increase al-
most linearly with the noise level increases, and bundle
adjustment can produce fairly better results than the linear esti-
mation. Fig. 3a–c display the errors of the other cameras’ Euler an-
gles relative to the first camera, Fig. 3d shows the errors of the
other cameras’ normalized translations. The errors also increase al-
most linearly with the noise level, and bundle adjustment can im-
prove the results of the linear estimation. The experiment also
shows that the 1st-order polynomial model is valid for the simu-
lated central catadioptric cameras.
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Fig. 4. Calibration errors of four cameras’ intrinsic parameters with different correspon
cameras. In experiments with 9 correspondences, only catadioptric camera parameters ar
with the same correspondences as in the experiments with 18 correspondences.
4.1.2. Influence of the number of image correspondences
We investigate the calibration performance with respect to the

number of image correspondences, which varies from 9 to 36. In
the experiments with 18, 27 and 36 correspondences, the catadiop-
tric and perspective cameras are calibrated with the same set of
correspondences. In the experiments with 9 correspondences, only
catadioptric camera parameters are estimated with the nine-point
solver, and the perspective camera are self-calibrated with 18 cor-
respondences for the numerical robustness of self-calibration [16].

Gaussian noise with mean 0 and standard deviation 0.2 pixels is
added to image points, 200 independent trails are performed for
each correspondence number, and intrinsic and extrinsic camera
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e estimated with the nine-point solver, and the perspective camera is self-calibrated



Table 3
Intrinsic parameters of four cameras with 108 correspondences. The 1st camera is a
perspective camera, and the other three cameras are all central catadioptric cameras.

Camera f r s u0 v0

1 1870.00 0.99 1.88 995.65 824.86
2 1174.50 0.94 6.46 1866.80 1372.60
3 1069.70 1.06 27.43 1827.90 1372.60
4 1056.00 0.98 13.92 1845.50 1372.10

(a) (b)

(c) (d)

(e)

Calibration images

Fig. 6. The images used for calibration. (a) A perspective image. (b–d) Three catadiopotric images. (e) Images of calibration pattern captured by the perspective camera, and
they are used to calibrate the camera by Bouguet Toolbox [6]. (For interpretation of the references to colour in this figure the reader is referred to the web version of this
article).

Table 4
Calibration results of three catadioptric cameras’ intrinsic parameters with different
numbers of correspondences (without bundle adjustment).

Cameras Point number f r s u0 v0

2 9 1117.10 1.00 0.00 1866.80 1372.60
18 1335.10 0.93 0.00 1866.80 1372.60
27 1198.40 0.87 0.00 1866.80 1372.60
36 1280.20 0.99 0.00 1866.80 1372.60

3 9 900.70 1.00 0.00 1827.90 1372.60
18 1254.90 1.02 0.00 1827.90 1372.60
27 1052.40 0.98 0.00 1827.90 1372.60
36 1131.00 0.98 0.00 1827.90 1372.60

4 9 1012.70 1.00 0.00 1845.50 1372.10
18 1250.60 1.02 0.00 1845.50 1372.10
27 1060.60 0.99 0.00 1845.50 1372.10
36 1126.60 1.05 0.00 1845.50 1372.10
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parameters for perspective and catadioptric cameras are esti-
mated. The relative errors of intrinsic parameters with respect to
f are shown in Fig. 4. In the experiments with 18, 27 and 36 corre-
spondences, the calibration results with more correspondences are
better. This is due to the fact that more correspondences can im-
prove the numerical robustness in the calibration and a better
catadioptric camera calibration improves the perspective camera
calibration results. The errors of catadioptric parameters with 9
correspondences are smaller than those with 18 correspondences
(This case appears special), which is probably due to the following
fact that prior knowledge (c20 = c02) of central catadioptric camera
is used in the nine-point solver; However, in the experiments with
18 correspondences, no such prior knowledge of central catadiop-
tric camera is used. These experimental results indicate that the
availability of some camera prior knowledge is more important
than by merely increasing the number of correspondences some-
times. Experiment results show that the calibration results of the
perspective camera in experiments with 9 correspondences are
also better than those with 18 correspondences.
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4.1.3. Comparison of the estimated perspective camera parameters
with DLT method

We compare the calibration results of perspective cameras with
our method and the method by the reconstructed scene points
with Direct Linear Transformation (DLT) [16]. In theory, the per-
spective camera can be calibrated with the reconstructed scene
points with DLT, while this method is weak in combating image
noises. In order to reconstruct scene points, motions between cam-
eras in the same coordinate system should be estimated, while
accurate motion estimation of multiple camera itself is not a trivial
task for image correspondences contaminated with noises [14,5].
As for this work, if the intrinsic parameters of two catadioptric
cameras are calibrated, the essential matrix can be recovered with
image correspondences, and the camera motion can be extracted.
Generally speaking, this motion estimation method does not ex-
ploit the constraints across multiple cameras, and it just uses
two camera geometric constraints, which is weak in combating im-
age noises [28]. After the motion between cameras are estimated,
the 3D scene point can be reconstructed with triangulation, and
thus the projection matrix of perspective camera can be calibrated
with reconstructed 3D scene points and their images by DLT. Final-
ly, the intrinsic and extrinsic parameters of perspective camera can
be recovered with RQ decomposition.

The obtained experiment results show that our method is more
reliable than DLT method as the noise level increases. Here, the rel-
ative errors of perspective intrinsic parameters with respect to f are
measured. Fig. 5 shows the errors of intrinsic parameters with our
method and with Direct Linear Transformation (DLT) as the noise
level increases. The errors of focal length with our method are
smaller than those with DLT, and the performance of other param-
eters is close.
Table 5
Calibration results of the perspective camera.

Method f r s u0 v0

Our method 1870.00 0.99 1.88 995.65 824.86

Fig. 7. Rectification of images in Fig. 6(b–d). Only a part of the rectified images are
shown due to the fact that the original transformed images are very large.
4.2. Real experiments

In this section, we use real hybrid camera image data to validate
our calibration method.

For the experiment with real data, a perspective cameras and a
central catadioptric camera are used. The image resolution of the
perspective cameras is of 2048 � 1536 pixels, and the resolution
of the catadioptric camera is of 3648 � 2736 pixels. The used cen-
tral catadioptric camera is a Canon Powershot digital camera, com-
bined with a hyperboloid mirror designed by the Center for
Machine Perception (CMP), Czech Technical University.1 The eccen-
tricity of the hyperbolic mirror is 1.302, and the corresponding mir-
ror parameter n is 0.966.

An image with the perspective camera and three images by
moving the central catadioptric camera three times are shown in
Fig. 6a–d. The principal points of three catadioptric cameras are
precalibrated using the center of the bounding ellipse like in
[35,39]. We manually select 108 correspondences across the four
views. The intrinsic parameters of perspective camera and catadi-
optric cameras with 108 correspondences are shown in Table 3.
The cameras’ parameters are calibrated with bundle adjustment.
The estimations of skew factors s for camera 3 and 4 are a bit high.
However, the relative error of skew factor with respect to f could be
a better calibration evaluation measure, which was suggested by
Triggs [34]. By this measure, the relative errors of skew factors
for camera 3 and 4 are fairly small, and the maximal relative error
is 2.56%.

We investigate calibration performance of three catadioptric
cameras’ intrinsic parameters with respect to the number of used
image correspondences for distortion parameter estimation. Here,
we choose 9, 18, 27 and 36 correspondences evenly from the 108
1 http://www.neovision.cz/prods/panoramic/mirrfoc.html.
correspondences. As shown in Table 4, the intrinsic parameters
of catadioptric cameras are close as the number of correspon-
dences varies.

The calibration results of central catadioptric camera are evalu-
ated with rectified images. The rectified images of Fig. 6a and b are
shown in Fig. 7a and b. The rectified lines are straight, and the hea-
vy distortion is removed. In addition, the three catadioptric images
are captured with the same camera, and the calibrated intrinsic
parameters for camera 2, 3, 4 are all close. We notice a MATLAB
toolbox in [21], which estimates the mirror parameter n and the
other parameters using a planar object. When performing the cal-
ibration by [21], we use the calibration toolbox that the author
provided. The calibration results are f = 1087.1, r = 0.9557, s = 0.0,
u0 = 1856.52, v0 = 1487.09, and n = 0.9866 ± 0.4525. Details on
Mei’s calibration method can be seen in [21]. From the experi-
ments, we can see that the results by our method is close to the re-
sult by Mei’s method. The differences of our method and Mei’s
method lie in that our method does not use planar structure infor-
mation of calibration pattern while Mei’s method requires such
information. The experiments validate the correctness of our cali-
bration results.

The calibration results of the perspective camera are compared
with the results by the 2D plane-based calibration method [6]. In
the experiment, the perspective camera is calibrated by using
Bouguet Calibration Toolbox [6], and images used for calibration
are shown in Fig. 6e and f. The intrinsic parameters by our method
and 2D plane-based calibration method are shown in Table 5, the
first row shows the estimation by our method, the second row is
the result by the 2D plane-based method, and the third row is
the relative error of the results with our method to the focal length
2D method [6] 2160.90 1.00 0.00 1047.72 758.25
Relative error (%) 13.50 0.00 0.08 2.41 3.08

http://www.neovision.cz/prods/panoramic/mirrfoc.html
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Table 6
Reconstruction errors with the results by our method.

Method �d (mm) rd (mm) w (deg) rw (deg)

Reconstruction error 22.80 0.80 89.60 0.78
d (mm) w (deg)

Ground truth 22.00 90.00
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by [6]. We can see that the results with our method and the meth-
od [6] are close, and the errors of intrinsic parameters by our meth-
od are small.

Reconstruction experiments with the calibration results are also
carried out to test the calibration results. In the reconstruction
experiments, the sphere model in Eq. (2) is used. After self-calibra-
tion, the 3D positions of correspondences are recovered up to a
common scale, and we use the lengths of line segments to estimate
the scale. The images of three planar calibration patterns with
black and white squares are shown in Fig. 6, and the reconstruction
results are shown in Fig. 8. Table 6 allows a qualitative evaluation
of the reconstruction by measuring the deviations from the right
angles and from distances between points on a facet of the calibra-
tion object. Angles between vertical and horizonal line segments h
(whose ground truth is 90�) are computed, and the ground truth of
distance d between each pair of neighbor corner points is 22 mm.
The mean h and standard deviation of rh, and the mean �d and stan-
dard deviation rd of distances computed by the reconstructed 3D
points are shown in Table 6. The results by our method are very
close to the ground truth.
5. Conclusions

In this paper, we proposed a linear self-calibration method of
hybrid central catadioptric and perspective cameras. Our calibra-
tion method is flexible, because it does not require any special cal-
ibration pattern, nor does it assume any prior knowledge of
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camera motion or scene geometry. The proposed method cannot
only calibrate the intrinsic and extrinsic parameters of the hybrid
camera system but also simplify the traditional nonlinear self-cal-
ibration of perspective cameras to a linear process. Traditional
self-calibration methods of perspective cameras usually involve
nonlinear minimization which could lead to numerical instability,
or require prior knowledge on the intrinsic parameters for a linear
solution. In this work, for a hybrid camera system with at least two
central catadioptric cameras and one perspective camera, we can
linearly calibrate the system without any assumption of the per-
spective intrinsic parameters, which makes our method more
practical. Experiments show that our method is robust and reli-
able. Hybrid camera systems are currently available at low cost,
and it is necessary that such systems are deployed rapidly with
minimal preparation [3]. Our method shows its potential in those
systems because it relies merely on correspondences without any
further prior knowledge on the scene and only little prior knowl-
edge on cameras.
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Appendix A. Normalization for hybrid central catadioptric and
perspective images

Hartley [16] suggested that the proper normalization of the im-
age data is the key to success with the 8-point algorithm for funda-
mental matrix estimation. The normalization suggested by Hartley
is a translation and scaling of each image so that the centroid of the
input data points is at the origin of the coordinates and the RMS
distance of the points from the origin is equal to

ffiffiffi
2
p

. The normal-
ized data leads to an enormous improvement in the conditioning of
the problem and hence the stability of the estimation. In this sec-
tion, we propose a normalization method for hybrid central catadi-
optric and perspective images.

Epipolar geometry between the perspective and rectified cen-
tral catadioptric images is

mT
1Fm̂u2ðcÞ ¼ 0 ðA:1Þ

where m1 = (u1,v1,1)T and m̂u2ðcÞ ¼ ðð1þ nÞu2; ð1þ nÞv2;1þ c20u2
2þ

c02v2
2Þ

T .
m̂u2ðcÞ can be transformed into the following:

m̂u2ðcÞ¼
ð1þnÞu2

ð1þnÞv2

1þc20u2
2þc02v2

2

0B@
1CA¼ 0 0 1þn 0 0

0 0 0 1þn 0
c20 c02 0 0 1

0B@
1CA

u2
2

v2
2

u2

v2

1

0BBBBBB@

1CCCCCCA
|fflfflffl{zfflfflffl}

~m2

ðA:2Þ

where ~m2 ¼ u2
2;v2

2;u2;v2;1
	 
T .

Incorporating (A.2) into (A.1), we have
ðu1;v1;1Þ
f11 f12 f13

f21 f22 f23

f31 f32 1

0B@
1CA 0 0 1þ n 0 0

0 0 0 1þ n 0
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2
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where

eF ¼ c20f13 c02f13 ð1þ nÞf11 ð1þ nÞf12 f13

c20f23 c02f23 ð1þ nÞf21 ð1þ nÞf22 f23

c20 c02 ð1þ nÞf31 ð1þ n2Þf32 1

0B@
1CA ðA:4Þ

Therefore, we have

m1
eF ~m2 ¼ 0 ðA:5Þ

Like the normalized 8-point algorithm for perspective cameras,
we can normalize the correspondences of perspective and central
catadioptric cameras as follows (inspired by [4]):

Normalization for perspective image as suggested by Hartley
[16] is in the following:

T1 ¼
d1 0 �d1cx1

0 d1 �d1cy1

0 0 1

0B@
1CA ðA:6Þ

where d1 is the value used for scale normalization and (cx1,cy1) be
the centroid of the points in the perspective image. After the trans-
form of the image coordinates m1 using m0

1 ¼ T1m1, we get the
transformed image coordinates m0

1.
Normalization for central catadioptric image is in the following:

T2 ¼

d2
2 0 �2cx2d2

2 0 c2
x2d2

2

0 d2
2 0 �2cy2d2

2 c2
y2d2

2

0 0 d2 0 �cx2d2

0 0 0 d2 �cy2d2

0 0 0 0 1

0BBBBBB@

1CCCCCCA ðA:7Þ

where d2 is the value used for scale normalization and (cx2,cy2) be
the centroid of the points in the central catadioptric image, lifting
a normalized point leads to the vector of five dimensions. In our
experiments, d1 and d2 are chosen so that the RMS distance of the
points (u1,v1) and (u2,v2) from the centroids are equal to

ffiffiffi
2
p

. The
geometric meaning of the normalization transformation T2 for ~m2

is that the RMS distances from u2
2;v2

2

	 

to the centroid c2

x2; c
2
y2

� �
and from (u2,v2) to the centroid (cx2,cy2) are both equal to

ffiffiffi
2
p

.
After the transform of the image coordinates ~m2 using

~m0
2 ¼ T2 ~m2, we get the transformed image coordinates ~m0

2.
Thus we can obtain a set of new point correspondences

m0
1 $ ~m0

2

� �
and use the SVD method to estimate the fundamental

matrix eF0.
Therefore, we can recover the fundamental matrix eF by the fol-

lowing equation:eF ¼ TT
1
eF0T2 ðA:8Þ

With the estimated eF, we can get the vector g in (34) easily, and
thus the distortion parameter (c20,c02) can be recovered by Eqs.
(35)–(37).

Appendix B. A nine-point solver for the distortion parameter
estimation problem

In this section, we derive a nine-point solver for the distortion
parameter estimation problem.
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It is well known that for standard uncalibrated case without
considering radial distortion, 7 point correspondences are suffi-
cient to estimate the epipolar geometry [16]. We have two more
parameters, the radial distortion parameters {c20,c02}. Therefore,
9 point correspondences are sufficient to estimate the unknown
(f11, f12, f13, f21, f22, f23, f31, f32, f33,c20,c02), and the solution can be ob-
tained by Gröbner basis solvers [18].2 However, Gröbner basis solv-
ers in the algebraic geometry field were generally designed for
concrete problems, and cannot be applied to new problems [10].

In this section, we use distortion priors to derive a nine-point
solver for the distortion parameter estimation problem, the solu-
tion can be a close approximation to the true value, and then the
distortion solution could be further refined with optimizations.
The approach is not a minimal solver for the problem, while it
has the merit of easy implementation.

Firstly, we use camera distortion prior knowledge of central
catadioptric camera (c20 = c02) to simplify the problem. The geo-
metric meaning c20 = c02 is that the aspect ratio of the camera is
�gð4Þ1
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1.0 (see Proposition 1), which is a close approximation for most
of off-the-shelf cameras. Thus, m̂u2ðcÞ can be transformed into
the following form [4]:

m̂u2ðcÞ¼
ð1þnÞu2
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The fundamental matrix �F between m1 = (u1,v1,1)T and

�m2 ¼ u2
2 þ v2

2; u2; v2;1
	 
T is in the following form:

�F ¼
c20f13 ð1þ nÞf11 ð1þ nÞf12 f13

c20f23 ð1þ nÞf21 ð1þ nÞf22 f23

c20 ð1þ nÞf31 ð1þ nÞf32 1

0B@
1CA ðB:2Þ

Denoted the vector �g to be the item vector of �F as
�g ¼ ð�g1; �g2; . . . ; �g12ÞT ¼ ðc20f13; ð1þ nÞf11; ð1þ nÞf12; f 13; c20f23;

ð1þ nÞf21; ð1þ nÞf22; f 23; c20; ð1þ nÞf31; ð1þ nÞf32; 1ÞT . We pile
up equations of epipolar geometry constraint mT

1
�F �m2 ¼ 0 by using

nine correspondences, and we have the following equations:
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where �D ¼ �DT
1;1;

�DT
1;2; . . . ; �DT

1;9

� �T
, and �D1;i is the coefficient vector of

�g by the ith pair correspondences.
With nine correspondences between (u1,v1,1)T and

ðu2
2 þ v2

2; u2; v2; 1ÞT , we can compute three vectors �giði ¼ 0; 1; 2Þ,
which form an orthogonal basis for the null space of �D, and the
solution �g should be in the form of

�g ¼ x0�g0 þ x1�g1 þ x2�g2 ðB:4Þ
2 A good link of minimal problems in computer vision,http://cmp.felk.cvut.cz/
minimal/index.php.
where xi(i = 1,2) are three unknown scalars. Since the nine equa-
tions generated by mT

1
�F �m2 ¼ 0 are homogeneous in �g, we set x0 = 1.

Secondly, we can get the following three constraints on
xi(i = 1,2) by using the above parameterizations of �g, the rank con-
straint for fundamental matrix and the relationships between the
variables in �g

�g4�g9 � �g1 ¼ 0 ðB:5Þ
�g8�g9 � �g5 ¼ 0 ðB:6Þ

detðFÞ ¼ 0() det

�g2 �g3 �g4

�g6 �g7 �g8

�g10 �g11 �g12

0B@
1CA ¼ 0 ðB:7Þ

The above problems for estimating the parameters xi(i = 1,2) all
lead to solving systems of algebraic equations. The first two equa-
tions leads to the following symbolic equations in two unknown
variables xi (i = 1,2) (two second order polynomials)
where �gðjÞi ði ¼ 0;1;2; j ¼ 1;2; . . . ;12Þ is the jth item of the vector �gi.
The solutions of symbolic Eq. (B.8) can be solved accurately and

easily with the solve function in Symbolic Math Toolbox of Mat-
lab, and no initializations for xi(i = 1,2) are required. Notice that
multiple solutions of xi(i = 1,2) can be computed from the two
symbolic equations, we choose the solution which can reach the
minimal value of cost function like Eq. (37).

Since the �F has one more parameter c20 than a conventional fun-
damental matrix, �F can be recovered with a minimal number of
eight correspondences. Our approach uses nine correspondences,
which is not a minimal solver for the problem, while our approach
only need to solve equations in two unknown variables xi(i = 1,2)
(two second order polynomials) and avoids solving the more com-
plex third order polynomials equation via detð�FÞ ¼ 0 in the case of
minimal solver with eight correspondences. This approach has the
advantage of easy implementation.

Finally, we can refine the catadioptric parameters by nonlinear
optimization techniques. The cost function is chosen as the sum of
the residual squares of the Eq. (37), and the distortion parameter
c02 is initialized with c20.
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