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Abstract Kernel grower is a novel kernel clustering method proposed recently by Camastra and Verri. It shows good performance
for various data sets and compares favorably with respect to popular clustering algorithms. However, the main drawback of the
method is the weak scaling ability in dealing with large data sets, which restricts its application greatly. In this paper, we propose
a scaled-up kernel grower method using core-sets, which is significantly faster than the original method for large data clustering.
Meanwhile, it can deal with very large data sets. Numerical experiments on benchmark data sets as well as synthetic data sets show
the efficiency of the proposed method. The method is also applied to real image segmentation to illustrate its performance.
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Clustering algorithms, which partition a data set into
groups based on the similarity between them, are very use-
ful in exploring data structure. They are widely used in
many applications such as data mining, document retrieval,
image segmentation, pattern classification, and so onlt—21,
Generally speaking, clustering methods include hierarchical
methods, graph theoretic methods, decomposing a density
function, and minimizing an objective function.

Kernel clustering methods have drawn much attention
in recent years> 1. The basic idea of kernel methods is to
transform the low dimensional input space X into a high
dimensional kernel deduced feature space F in which the
patterns are more likely to be linearly separable!®. Com-
paring with classical clustering methods, kernel clustering
methods have advantages in dealing with more complex, es-
pecially nonlinear separable data sets. Existing kernel clus-
tering methods either kernelize the original methods such as
kernel K-means, kernel self-organizing maps (SOM), kernel
neural gas, or adopt the support vectors description such
as kernel grower and support vector clustering.

Kernel grower[S] is a recently proposed unsupervised
learning method. It is based on the classical K-means and
one-class (SVM). It maps the data space to the kernel-
deduced feature space and then adopts an iteration strat-
egy similar to that of K-means. In each iteration, instead of
computing the mean of points as centers, it computes the
smallest sphere which encloses the closest data. The main
advantages of the kernel grower method over other cluster-
ing algorithms are its ability to generate naturally nonlinear
clustering boundaries and its robustness to outliers by us-
ing soft margin one-class SVM, in which a slack variable is
used to allow some points to be outside the sphere.

However, a major drawback of the algorithm is its weak
scalability. The algorithm becomes very slow when dealing
with large data sets. It is even impossible to deal with ex-
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tremely large data sets (with thousands or millions of data
points). The time complexity of the algorithm is O(N?),
where N is the cardinality of the data set. The weak scala-
bility restricts the application of this algorithm greatly. To
our knowledge, no successful practical application of this
algorithm has been reported.

In this paper, we propose a scaled-up kernel grower al-
gorithm using core-sets. A core-set is a subset of points
by which the (1 + €)-approximate minimum enclosing ball
(MEB) can be obtained efficientlyl”). The idea of core-
sets has been widely applied to fast smallest-enclosing
ball computation®~%, SVM classification"®, large data
1"egr~€:ssion[11]7 and so on. The results in this paper show
that the idea of core-sets can also be applied to develop
effective clustering algorithms. Compared with the time
complexity of O(N?) of the original kernel grower method,
the scaled-up algorithm is of a much lower time complexity,
which is only linear with N. Therefore, it is significantly
faster in large data clustering than the original method.
Furthermore, the new algorithm can deal with extremely
large data sets, which makes the algorithm suitable for use
in many practical applications.

An important application of clustering methods is im-
age segmentation, which plays an important role in com-
puter vision, object recognition, preprocessing of medical
images, and so on. Among existing segmentation meth-
ods is the well-known normalized cut method[u], which
treats image segmentation as a graph partitioning problem.
Kernel-induced distance measure is also proposed to give a
robust image segmentation method!™®). In this paper, we
also apply the new scaled-up kernel grower algorithm to
practical image segmentation. Experimental results show
the validation and effectiveness of the method.

The paper is organized as follows. Section 1 introduces
the kernel grower algorithm. Section 2 presents the scaled-
up kernel grower algorithm. In Section 3, numerical experi-
ments on benchmark data sets as well as synthetic data sets
are presented. Real data experiments on image segmenta-
tion are also conducted in this section. Some concluding
remarks are given in Section 4.

1 The kernel grower clustering algo-
rithm

In this section, we briefly discuss the kernel clustering
algorithm proposed by Camastra and Verri®® and Cama
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-stral®| which is called the kernel grower (KG) algorithm
in this paper. The notion of kernel grower first appears in
the Ph.D. dissertation of Camastra®l.

Suppose there are m input data {z1,---,zm} C X,
where z; € R". First, a nonlinear transformation ¢ : X —
F is used to map the data point z; to ¢(;). It holds that
o(x;) - d(z;) = K(zi,z;), where K(-,-) is a kernel func-
tion such as the Gaussian kernel. Then, a K-means like
iterative strategy is adopted in the feature space. Two im-
portant concepts, Voronoi region and Voronoi set, will be
introduced in the following.

Suppose {p;, - ,px} C F is the set of clustering cen-
ters, and K is the number of cluster centers. Set z = ¢(x)
and z; = ¢(x;). Then, the Voronoi region Rj of p, (1 <
k < K) in the feature space is defined asl’]

Ry ={2 € Flk = arg min ||z —p;]} (1)

The Voronoi set Vi, of p, is defined by

Vi ={2:; € Flk =arg min ||z; —p,||and||z; —p,| < p}
j=1, K J J
(2)
where the parameter p is a constant, which can be chosen
by the model selection technique[M].
For a fixed kernel function, the kernel grower method
consists of the following steps:

1) Initialize K Voronoi sets Vi(p), k =1,--- , K by ran-
domly choosing a small subset of the training points;

2) Train a one-class SVM for each Vi(p), k =1,--- | K
to get new cluster centers in the feature space;

3) Update each Vi(p), k = 1,---, K according to the
centers obtained in Step 2;

4) If no Voronoi set changes in Step 3, stop; otherwise,
go to Step 2.

Instead of getting the clustering centers by calculating the
mean of the Voronoi sets in K-means, the kernel clustering
method uses the one-class SVM.

1.1 The one-class SVM

The one-class SVM proposed by Tax and Duin was
named as support vector data description (SVDD)[IS].
SVDD seeks the minimum enclosing hypersphere of the tar-
get data and excludes the space of outliers. On the other
hand, the one-class SVM based on hyperplanes was also
proposed 6.

Suppose {z1,---,z;} is the set of training patterns,
where ; € R". The SVDD is formulated as

l

i 24 1 .

Flgllll»rfli R + ul z; §Z (3)

s.t. H¢($1)—a||2SR2+§“’L:172,7l
0<¢&,1=1,2,---,1

where R and a denote the radius and the center of the
hypersphere in the feature space, respectively, ¢ is the cor-
responding feature mapping, & = [£1,---,&]T denotes the
slack variable, and p € (0, 1) is the user-defined parameter
specifying the upper bound on the fraction of outliers.

Problem (3) is often solved by its dual problem:

! ! !
max — Z Z aiocjk(a:i,a:j) + Z Oéik(.’ti,.’ti)
o

li:lj:l i=1 (4)
s.t. Zaizl,ogaigﬁ,i:1,~-7l
i=1
where a = {a1,--- ,;}" is the dual variable, and K;x; =
[k(zi,z;]ixi = [d(x:) - ¢(x;]ix: is the kernel matrix.

Thus, the SVDD is transformed into solving a dual
quadratic programming (QP), which is commonly solved
by Newton or quasi-Newton method in optimization.

1.2 Drawbacks of KG

Although KG compares favorably against popular clus-
tering algorithms on many benchmark databasesl®, the
main drawbacks of KG lie in

1) KG requires heavy computation time, since QP prob-
lems are solved in each iteration.

2) Moreover, KG is nearly impossible to run for very huge
data sets due to its slowness.

In order to improve the KG algorithm, we propose a
scaled-up KG method for large data set in the next sec-
tion.

2 Scaling up kernel grower clustering
for large data sets

In this section, we improve the KG algorithm by using
the idea of core-sets. The improved KG method is called
the scaled-up KG algorithm.

2.1 Core-sets

The notion of core-sets appears in solving the approxi-
mate minimum enclosing ball (MEB) problem in computa-
tional geometry"=?1. A core-set is a subset of indices such
that the (1 + ¢)—approximate MEB can be obtained by
solving the optimization directly. An encouraging property
of core-sets is that the number of elements in it is indepen-
dent of the dimension of the space and the size of the data
set(. Fig.1 demonstrates the idea of core-sets in solving
the (14 €)—approximate MEB in computational geometry.

Fig.1 Denote S to be the set of training examples, the inner
circle is the MEB of points in squares, and the outer circle is
the (1 + €)-approximate of M EB(S). The set of points in
squares is thus a core set
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Tsang et al.l% transformed the traditional SVM prob-
lem into solving the MEB in the feature space using core-
sets and proposed an approximate method to solve SVM,
called core vector machine (CVM). CVM is considerably
fast in large data classification. The idea of core-sets
has also been used widely in fast smallest-enclosing ball
computation® 9, large data regression[u]7 and support
vector data description (SVDD)[”] for massive data prob-
lems and so on.

2.2 Scaled-up support vector data description

Denote by Si, e:, and R, the core-set, the center of
the ball, and the radius at the ¢-th iteration, respectively
(t=1,2,---). Suppose M EB(S) is the MEB of the set S
and B(e, R) is a ball with the center of ¢ and the radius of
R. Let the parameter p be an upper bound on the fraction
of outliers. SVDD gets the minimum enclosing hypersphere
in the kernel-deduced feature space. For a given € > 0, the
scaled up SVDD works as follows!:

1) Initialize S1,e1, and Ry.

2) Terminate if the number of points ¢(z) which falls out-
side B(et, (1 + €)R:) is smaller than pN, where N is
the number of patterns.

3) Otherwise, find z such that z is the closest point out-
side B(Ct, (1 + E)Rt). Set St+1 = St U{Z}

4) Find the new MEB(St+1) and set ¢t+1 to be the
center of M EB(Si+1) and Riy1 to be the radius of
MEB(Si41).

5) Increase t by 1 and go back to Step 2.

2.3 The scaled-up KG algorithm

The scaled-up KG algorithm consists of the following
steps:

1) Initialize K Voronoi sets Vi(p),k = 1,--- , K using a
small subset of the training points.

2) Instead of using the popular dd-tool for one-class prob-
lem, the one-class SVM for each Vi (p) is trained using
the scaled-up SVDD.

3) Update each Vi (p).

4) If no Voronoi set changes in Step 3 or the iteration
number is larger than a given threshold, stop; other-
wise, go to Step 2.

2.4 Time complexity analysis

Suppose N denotes the cardinality of the data set, K
denotes the number of clustering centers and 77 and 713
denote the iteration numbers to guarantee convergence of
KG and scaled-up KG, respectively. If the number of clus-
ter indices belonging to each cluster set at the ¢-th iteration
is {n@, e ,n&?}, then, KG has a time complexity of

C1 =3 0((nl")") -+ +O((n?)) = O(TN*) = O(N?)

In comparison, the scaled-up KG has a time complexity of

o 1 1 1
Ce = ZO(G?TLY) + 574) +"'+O(€f2n§? + 674) _
i=1
T Ts 1 1
O(ZN+3)=0(5N+7)

Here, 71 and T> are the given numbers. They can be cho-
sen using a model selection criteria such as cross validation.
Thus, for any fixed € > 0, the time complexity of the scaled-
up KG is linear with the size of the data set,whereas the
time complexity of KG is cubic with the size of the data
set.

3 Experiments and comparisons

We compare KG and scaled-up KG on benchmark data
sets as well as synthetic data sets in both CPU time and
the correct ratio. An application of scaled-up KG to real
image segmentation is also given. Experiments were run
on a 3.20GHz Pentium-4 machine, with 512MB RAM. The
program was written with Matlab. We adopted the data
description toolbox dd-tools 1.5.51% in the implementation
of KG.

3.1 Comparison of clustering performance with
benchmark databases

Example 1. Iris data

The Iris data set contains 150 instances, and each is com-
posed of four measurements. The instances belong to three
classes, and each class is represented by 50 instances. One
class is linearly separable from the other two, whereas the
other two classes are nonlinearly separable.

We compared KG and scaled-up KG on iris data in 20
runs with respect to different initializations. The parame-
ters of the Gaussian kernel in KG and scaled-up KG were
set to be 01 = 02 = 1.1, respectively. The parameter p was
set to be pu1 = 10719 in KG and o = 1071 in scaled-up
KG. We considered ¢ = 0.05. In each run, 20 iterations
were taken to guarantee convergence for both methods.

Scaled-up KG took longer CPU time than KG in this ex-
periment, as shown in Table 1. It is understandable since
the size of iris data is relatively small and the scaled-up
KG has to run the QP multiple times, which takes more
time than solving the QP directly. As an approximation
algorithm, scaled-up KG has a correct ratio that is slightly
lower than that of KG. However, it is much higher than
other clustering algorithms and is acceptable, as shown in
Table 2.

The results show that KG is more suitable for the clus-
tering of small data sets (e.g., the number of patterns are
smaller than 200). The performance of KG and scaled-up
KG on large-scale data clustering was tested in the follow-
ing.

Example 2. Wisconsin breast cancer database

The Wisconsin breast cancer database consists of 699
cases. It has 9 dimensions, and each dimension has a value
between 1 to 10. It contains 16 cases which have at least one
unknown attribute value. Thus, the database contains 683
available patterns. All the patterns belong to two classes.

We compared the KG and scaled-up KG in 20 runs with
respect to different initializations. The parameters of the
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Gaussian kernels were set as 01 = 0.9 and o2 = 0.5, re-
spectively. In each run, we took 20 iterations in KG to
guarantee convergence and 10 iterations in scaled-up KG
for convergence. The parameter p1 = pe = 107° in both
algorithms, and we considered ¢ = 0.1 in scaled-up KG.
It turns that scaled-up KG has a much shorter CPU time
than KG, as shown in Table 1. The accuracy of scaled-up
KG is slightly lower than that of KG but much higher than
that of other methods, as shown in Table 2.

The results show that the scaled-up KG can speed up
the original KG significantly, and its accuracy is validated
to be close to that of KG.

Example 3. Spam database

The Spam email database contains 4 601 patterns, which
belong to two classes of spam and non-spam data. Each
pattern has 58 dimensions. Among the entire patterns,
1813 patterns belong to the class of spam (39.4 %), whereas
the remaining patterns belong to the class of nonspam
(60.6 %).

The experiment was performed on 1534 patterns from
the Delta set, which is the same as it is in [3]. 20 runs
with different initializations were tested for scaled-up KG.
In each run, 24 iterations were taken to guarantee con-
vergence. The parameter of Gaussian kernel was set as
o =8.0. Weset u = 107% and € = 0.2. The result shows
that KG becomes very slow, but scaled-up KG is very fast,
as is shown in Table 1. Although the accuracy of scaled-up
KG is slightly lower than that of KG, it outperforms other
commonly used clustering algorithms, as shown in Table 2.
Thus, it follows that the scaled-up KG is efficient in large-
scale data clustering. Its average accuracy is higher than
those of other popular clustering algorithms and slightly
lower than that of KG.

Remark 1. In Table 1, T} is the CPU time of scaled-up
KG, T> is the CPU time of KG, * means that the algo-
rithm takes too long a time or is nearly impossible to run.
It can be seen that KG achieves a better performance for
small data clustering. On the other hand, scaled-up KG is
significantly faster than KG for large-scale data clustering.

Remark 2. Table 2 shows the comparison results on av-

erage clustering accuracy using different clustering meth-

Table 1 Comparison of scaled-up KG and KG in terms of
CPU time
Data set Data size Ty (s) Ts (s)
Iris 150 47.9523 12.9477
Delta 424 9.3985 226.2800
‘Wisconsin 683 22.8453 807.1695
Spam 1534 44.8258 *

Table 2 Comparison of average correct ratios with respect to

different clustering methods

Algorithm Iris(%) Wisconsin(%) Spam (%)
SOM 81.0 96.7 78.9
K-means 89.0 96.1 70.6
Neural gas 91.7 96.1 68.4
Ng-Jordan 84.3 95.5 60.6
Kernel grower 94.7 97.0 81.3
Our method 93.4 96.8 80.2

ods. The results for SOM, K-means, neural gas, Ng-Jordan,
and kernel grower are from [3]. It can be seen that the accu-
racy of scaled-up KG outperforms SOM, K-means, neural
gas, and Ng-Jordan on the three benchmark datasets. The
accuracy of scaled-up KG is slightly lower than that of KG
since it is an approximate algorithm.

In summary, scaled-up KG is significantly faster in large-
scale data clustering; moreover, it provides an effective ap-
proximation algorithm with preferable correct ratios com-
pared with the original KG.

3.2 Comparison of clustering performance with
synthetic data sets

Example 4. Delta set

We used the synthetic delta set to test the KG algorithm
and the scaled-up KG algorithm. Delta set is publicly avail-
able!. It is formed by 424 training samples in R?. The
points are randomly distributed on two semicircles with
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can be seen that the points are clustered into two classes successfully at the last iteration

Mftp.disi.unige.it/person/CamastraF /delta.dat

Fig.2 An example of the convergence procedure of the scaled-up KG on Delta set. It takes eight iterations to converge. The data
which belong to the first and second clusters, and data which do not belong to any cluster are denoted with different gray levels. It
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Fig.3 Experiment results on scaled-up delta sets using the scaled-up KG

(a) (b) (e)

(k)

Fig.4 The segmentation results for images from Berkeley image segmentation database with scaled-up KG. The segmentations are
based on color information. Odd row: original images. Even row: segmentation results. The original images are color images, while
the segmentation results are shown by intensity images. Each segmented image is shown by k discrete levels of gray values, where k
is the number of clusters. Pixels with the same level of gray values belong to the same cluster. It can be seen that the scaled-up
KG can deal with image segmentation problems efficiently
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the same center and are linearly inseparable.

Commonly used algorithms, which are based on distance
criteria in the original input space such as K-means, cannot
separate delta set with just two exemplars welll®. On the
other hand, similar to KG, scaled-up KG can separate the
two clusters successfully.

We compared KG and scaled-up KG in 20 runs with dif-
ferent initializations. The parameters of the Gaussian ker-
nel K(z,y) = exp(%}l’”z) were set as 0 = 01 = 02 = 0.4.
We took € = 0.1 in scaled-up KG. In each run, we took
20 iterations in both algorithms to guarantee convergence.
The result was that the correct ratio was equal to 100 per-
cent for both algorithms. However, scaled-up KG took a
much shorter CPU time than KG, as shown in Table 1.

Therefore, scaled-up KG can speed up the clustering on
Delta data significantly with the same correct ratio as KG.

Example 5. Scaled-up delta sets

In this experiment, we tested scaled-up KG on a series of
scaled-up delta data sets. The points were randomly drawn
around 2 semi-circles in R? with the same center. The ra-
dius of the semi-circles were set as 0.5 and 1.0, respectively.
The size of the data sets ranged from 4 240 to 42 400. Based
on the synthetic data sets, we compared the scalability of
KG and scaled-up KG. The parameter of Gaussian kernel
was chosen as o = 0.4. The iteration number of scaled-up
KG was set to be 100. Here, we took € = 0.15.

KG was no longer applicable to the scaled-up delta data
due to its slowness, but the scaled-up KG gave us the clus-
tering results accurately and efficiently.

Fig. 3 shows the performance of scaled-up KG on scaled-
up Delta sets in terms of both CPU time and the average
error ratio. It can be seen in Fig. 3 (a) that the CPU time
increases with the increasing of the size of the data set. For
fixed degree of approximation, that is, fixed €, the CPU
time increases linearly in the size of the data set. More-
over, a larger e corresponds to a shorter time. Fig.3 (b)
shows that the average clustering error increases slowly as
a function of e.

In summary, the above experiments on benchmark data
sets as well as synthetic data sets show that in dealing
with large-scale data clustering, scaled-up KG is signifi-
cantly faster than the original KG, with the correct ratio
close to that of KG. Furthermore, scaled-up KG can deal
with much larger data sets which KG finds it difficult to
handle.

3.3 Application with real data

Many problems in pattern recognition and computer vi-
sion require fast and effective clustering methods for large
data sets. In this experiment, we used the scaled-up KG
in color image segmentation. In each picture, we took the
pixels as samples. Since the number of pixels is huge, KG
becomes unavailable due to its slowness. Note that the
segmentation in this paper is basically based on color.

The Berkeley image segmentation database!*®! contains
300 images of natural scenes with true hand segmenta-
tions of each image. The original images are available on-
line?. We used 9 color images from the Berkeley image
segmentation database for segmentation. Each image is an
481 x 321 x 3 array of color pixels, where each color pixel is

a triplet corresponding to red, green, and blue components.
For each picture, after converting from RGB to HSV color
space, we obtained a matrix composed of 154401 column
vectors in the R? space. We explored the performance of
our scaled-up KG. The segmentation results were demon-
strated in Fig. 4. Images (a), (b), (c), and (h) in Fig. 4 used
3 classes for segmentation, whereas images (g) and (i) used
4 classes. We took 24 iterations in each run for convergence.
Each image took less than 2 minutes for segmentation using
the scaled-up KG, with program written in Matlab. Com-
pared with the unavailability of KG, scaled-up KG can deal
with the image segmentation problems fast and effectively.

4 Conclusion

In summary, this paper makes three contributions. First,
we propose a scaled-up kernel grower clustering method
using core-sets. It is significantly faster than the origi-
nal kernel grower in dealing with large data sets. Sec-
ond, the scaled-up kernel grower can handle much larger
data sets than the original method can. Numerical experi-
ments on benchmark data sets as well as synthetic data sets
show the priority of the method. Third, a real application
of scaled-up kernel grower on image segmentation is also
given to show the efficiency and validation of the method.
The future work will be focused on the convergence and
model selection methods for better parameter settings of
the method.
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