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An Easy Calibration Method for Central Catadioptric

Cameras
DENG Xiao-Ming1 WU Fu-Chao1 WU Yi-Hong1

Abstract Central catadioptric cameras are widely used in virtual reality and robot navigation, and the camera calibration is a
prerequisite for these applications. In this paper, we propose an easy calibration method for central catadioptric cameras with a 2D
calibration pattern. Firstly, the bounding ellipse of the catadioptric image and field of view (FOV) are used to obtain the initial
estimation of the intrinsic parameters. Then, the explicit relationship between the central catadioptric and the pinhole model is
used to initialize the extrinsic parameters. Finally, the intrinsic and extrinsic parameters are refined by nonlinear optimization. The
proposed method does not need any fitting of partial visible conic, and the projected images of 2D calibration pattern can easily cover
the whole image, so our method is easy and robust. Experiments with simulated data as well as real images show the satisfactory
performance of our proposed calibration method.
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1 Introduction

Catadioptric cameras have wide field of view (FOV) and
they are widely used in many applications such as virtual
reality, robot navigation, and visual surveillance. The cal-
ibration of catadioptric cameras is a prerequisite for these
applications. Central catadioptric cameras, a kind of cata-
dioptric cameras that have a unique viewpoint, have at-
tracted increasing attentions in recent years[1]. This paper
provides an easy calibration method for the central cata-
dioptric cameras.

The previous calibration methods for the central cata-
dioptric cameras could be classified into the following five
categories:

1) Self-calibration without scene information. Kang[2]

used the consistency of pair-wise tracked point features for
calibration. The method is only suitable for catadioptric
cameras with a paraboloidal mirror.

2) Sphere based calibration. Ying and Hu[3] analyzed the
relation of the camera intrinsic parameters and the sphere
imaged contour. Then, they applied the relation to cali-
brating central catadioptric cameras.

3) Line based calibration. Geyer and Daniilidis[4] cali-
brated para-catadioptric cameras from at least three line
images. Barreto and Araujo[5] studied the geometric prop-
erties of line images under the central catadioptric model,
and gave a calibration method for all kinds of central cata-
dioptric cameras. All these methods involve conic fitting,
an error-prone process when only partial contour is avail-
able. Recently, Wu et al.[6] introduced a shift from the
central catadioptric model to the pinhole model, then a
constraint that after the above shift the image points on
a space line must be collinear was used to calibrate para-
catadioptric-like cameras. This method did not need fit-
tings of partially visible conic and was totally linear.

4) Point based calibration. From known 3D space points,

Aliaga[7] proposed an approach to estimate camera in-
trinsic and extrinsic parameters, where the mirror center
was manually determined. Vasseur and Mouaddib[8] calcu-
lated intrinsic parameters by a nonlinear method with 3D
space points. Wu and Hu[9] introduced the invariants of
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1D/2D/3D space points and then used them to compute
the camera principal point with a quasi-linear method.

5) 2D calibration method. Recently, Kannata and

Brandt[10] proposed a 2D calibration method for fisheye
cameras, and Scaramuzza et al.[11] proposed a 2D calibra-
tion method for catadioptric cameras. Since the images of
2D pattern can easily cover the whole catadioptric image,
their methods are capable of accurate calibration. However,
the single view point constraint, which is of great impor-
tance to the central catadioptric cameras[1], was not used
in the two papers.

This work is inspired by Kang[2]. Kang proposed a di-
rect circle-based self-calibration method, which used the
center of the extracted bounding ellipse of the omnidirec-
tional image as the principal point and got the mirror pa-
rameter with the FOV and radius of the omnidirectional
image. Kang′s method can be used only for catadioptric
cameras with a paraboloidal mirror. In Kang′s paper, the
conclusion is that the circle-based method can on occasion
produce reasonable results.

In this paper, we propose an easy calibration method
for central catadioptric cameras with a 2D calibration pat-
tern. Our method is suitable for central catadioptric cam-
eras with all kinds of quadric mirrors (including planar mir-
rors), whose FOVs are smaller than or equal to full hemi-
sphere i.e. FOVs ≤ 180◦. With the bounding ellipse of the
catadioptric image and the camera′s FOV, the initial in-
trinsic parameters can be obtained under the unified image
model[12]. Next, we take one or more images of the 2D cal-
ibration pattern under different orientations to refine the
intrinsic parameters1. Although the explicit relationship
between the central catadioptric and the pinhole model is
not new[6], in this paper, we give its geometric interpreta-
tion and use the above explicit relationship to initialize the
extrinsic parameters of 2D calibration pattern. Optimiza-
tion of the reprojection error is finally engaged to refine all
the parameters. Experiments show that our method can al-
ways get good calibration results with both simulated and
real image data.

The advantages of our paper lie in the following aspects:
1) No need for fitting partial visible conic. It is a hard

problem[13] that most of classical line-based calibrations for
a central catadioptric camera need fittings of partial visible
conics.

2) Only the bounding ellipse of the catadioptric image

1In practice, the catadioptric cameras with FOV > 180◦ can also
be calibrated with our method, if the projections of 2D calibration
pattern are all within the region projected via the below hemisphere.
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and several images of 2D calibration pattern are needed for
a full calibration. With more images of a 2D calibration
pattern, the accuracy and robustness of calibration can be
further increased.

3) It is an easy calibration method for both pinhole and
central catadioptric cameras with all kinds of quadric mir-
rors.

This paper is organized as follows. In Section 2, the
pinhole and central catadioptric camera models are intro-
duced. Section 3 elaborates on how to calibrate central
catadioptric camera with points on a plane. All the intrin-
sic and extrinsic parameters can be analytically obtained.
Section 4 reports some experiments with both simulated
and real image data. Section 5 is the conclusion.

2 Preliminaries

2.1 Pinhole camera model

Under the pinhole camera model, a 3D point MMM is pro-
jected to its image point mmm by

mmm ≈ K[R,ttt]

[
MMM
1

]
, K =




rf s u0

0 f v0

0 0 1


 (1)

where R is the rotation matrix and ttt is the translation
vector, K is the camera intrinsic matrix, with f the focal
length, r the aspect ratio, [u0, v0] the principal point, and
s the parameter describing the skew of the two image axes.

2.2 Central catadioptric camera model

Catadioptric cameras are devices of pinhole cameras
mounted with a mirror. Baker and Nayar[1] investigated
that the revolving mirrors for catadioptric cameras with
a single viewpoint are planar, paraboloidal, hyperbolical,
and ellipsoidal. A catadioptric camera consists of reflec-
tive (catoptric) and refractive (dioptric) steps (as shown in
Fig. 1): an incident ray from a 3D point MMM is reflected by a
quadric mirror, then the reflected ray is refracted through
the pinhole camera onto the image plane.

Fig. 1 Central catadioptric cameras with quadric mirrors
(where OOO is the single viewpoint and ZZZ axis is the optical axis)
((a) Paraboloidal mirror; (b) Ellipsoidal mirror; (c) Hyperboli-
cal mirror. For central catadioptric cameras with ellipsoidal and
hyperbolical mirrors, the optical center of pinhole camera and
the viewpoint OOO are at the two foci of ellipsoid and hyperboloid.
For a central catadioptric camera with paraboloidal mirror, the
incident ray from MMM is reflected by the mirror, then the reflected
ray is orthographically projected to the image plane.)

Geyer and Daniilidis[12] proposed a generalized image
formation model for central catadioptric cameras. They
showed that the above central catadioptric image formation
is equivalent to the following two-step mapping by a sphere
(see Fig. 2).

Fig. 2 Image formation of a central catadioptric camera

A 3D point MMM is projected to a point MMMs on a unit sphere
centered at the viewpoint OOO, then projected to a point mmm on
the image plane Π by a virtual pinhole camera through the
perspective center OOOc. The image plane is perpendicular
to the line of the viewpoints OOO and OOOc, and it is called the
catadioptric image plane. The process can be explicitly
expressed as[6]

mmm ≈ K(
RMMM + ttt

‖RMMM + ttt‖ + [0, 0, ξ]T) (2)

The optical axis of the pinhole camera is the line OOOOOOc,
and thus its principal point ppp = [u0, v0, 1]T is the intersect-
ing point of the line OOOOOOc with the image plane Π. The
distance from point OOO to OOOc, ξ = ‖OOO−OOOc‖, which is com-
monly called the mirror parameter, determines the mirror
used in the central catadioptric camera. The mirror is a
paraboloid if ξ = 1, an ellipsoid or hyperboloid if 0 < ξ < 1,
and a plane if ξ = 0.

3 Calibration algorithm

In our method, the mirror parameter ξ, FOV of the cata-
dioptric camera is assumed to be known, and the bounding
ellipse of the catadioptric image is supposed to be visible.

3.1 Calibration of principal point and initializa-
tion of skew and aspect ratio

Before introducing our calibration method, we would like
to say that the center of the bounding ellipse of the cata-
dioptric image can be considered as the principal point like
in [3, 6]. The bounding ellipse is fitted with the method
described in [13]. If the equation of the fitted boundary
ellipse is au2 + 2buv + cv2 + 2du + 2ev + f = 0, we can get
the principal point as

u0 =
be− cd

ac− b2
, v0 =

bd− ae

ac− b2
(3)

For the skew and aspect ratio, we use their prior knowl-
edge as the initial values. In practice, this knowledge is
known for most cameras. For example, the skew and as-
pect ratio of many off-the-shelf cameras are close to 0 and
1, respectively.
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3.2 Calibration of the focal length

Let mmm = [u, v, 1]T be the projection of the 3D point
MMMs = [xs, ys, zs]

T on the unit sphere, and LLL = [0, 0, ξ]T.
Then, from (2), we have

λmmm = K




1 0 0 0
0 1 0 0
0 0 1 ξ




[
MMMs

1

]
= K(MMMs + LLL) (4)

MMMs = λK−1mmm−LLL (5)

Since MMMT
s MMMs = 1, we have

mmmTK−TK−1mmmλ2 − 2mmmTK−TLLLλ + LLLTLLL− 1 = 0 (6)

Like in [6], two solutions of λ from (6) can be obtained as

λ1,2 =
mmmTK−TLLL±√

(mmmTK−TLLL)2 −mmmTK−TK−1mmm(ξ2 − 1)

mmmTK−TK−1mmm
(7)

Since zs > −ξ i.e., λ > 0, we have

λ =
mmmTK−TLLL +

√
(mmmTK−TLLL)2 −mmmTK−TK−1mmm(ξ2 − 1)

mmmTK−TK−1mmm
(8)

Let φ be a half of FOV. As shown in Fig. 3, φ satisfies

cos φ = MMMs · [0, 0, 1]T (9)

Fig. 3 The FOV of a central catadioptric camera

With the FOV provided by the manufacturer, we can
get φ = FOV/2. Putting (5) and (8) into (9) and letting
η = mmmTK−TK−1mmm, we can get

η =
2ξ cos φ + ξ2 + 1

(cos φ + ξ)2
(10)

in which only the focal length f is unknown2. Since the
skew and aspect ratio are initialized as 0 and 1, we can get
the focal length f using one point (u, v) on the bounding
ellipse as

f2 =
(u− u0)

2 + (v − v0)
2

η − 1
(11)

which is a quadratic equation and has two solutions. Since
the image plane is always in front of the perspective center
OOOc, the positive solution of (11) is chosen as the focal length

i.e., f =
√

(u−u0)2+(v−v0)2

η−1
. In addition, the focal length

can also be estimated in a geometrical way as shown in the
Appendix.

2η ≥ 1, for ∀φ; η = 1, if and only if φ = 0.

Because the FOV provided by the manufacturer is only
an approximation to the true value, there is noise for the
selected points on the bounding ellipse, and there also may
exist some small misalignments between the mirror and pin-
hole camera, the above estimated intrinsic parameters can
be only approximations. In Sections 3.3 and 3.4, we will
use several images of 2D calibration pattern to refine these
initial estimations.

3.3 Initialization of the extrinsic parameters

In this part, we use the shift from the central catadiop-
tric model to the pinhole model given in Section III in [6],
and then give its geometric interpretation and initialize the
extrinsic parameters of 2D calibration pattern with the ho-
mography from the calibration pattern plane to a virtual
image plane.

Without loss of generality, we assume the calibration pat-
tern plane is at ZZZ = 0 of the world coordinate system, thus
a point on the calibration pattern plane can be expressed as
MMM = [x, y, 0]T. The extrinsic parameters (R,ttt) can be ini-
tialized via the homography H from the calibration pattern
plane to a virtual image plane.

Now, we are to estimate H. Since

λmmm = K(
RMMM + ttt

‖RMMM + ttt‖ + LLL ) (12)

we have

λmmm−ξppp = K
RMMM + ttt

‖RMMM + ttt‖ ≈ K(RMMM+ ttt) = K[rrr1, rrr2, ttt]




x
y
1




(13)
Define m̃mm = λmmm− ξppp with λ known as shown in (8) and

M̃MM = [x, y, 1]T. Then, (13) can be expressed as

m̃mm ≈ HM̃MM (14)

where H = K[rrr1, rrr2, ttt].
(14) indicates there exists a homography between m̃mm and

M̃MM . We should note that the mapping between M̃MM and mmm
cannot be described by a homography. This is because, at
first, the spacial point is projected on a sphere, not on a
plane, then the projected point on the sphere is reprojected
on the image plane. Although this whole projection process
is from a space plane to the image plane, since the inter-
mediate projection is via a sphere, not a plane, the whole
process cannot be modeled as a projective one.

Given the homography and intrinsic matrix, we can ob-
tain (R,ttt) by

rrr1 = µK−1hhh1, rrr2 = µK−1hhh2, rrr3 = rrr1 × rrr2, ttt = µK−1hhh3

(15)
where µ has two solutions, i.e.,

µ1 =
1

‖K−1hhh1‖
=

1

‖K−1hhh2‖
, µ2 = − 1

‖K−1hhh1‖
= − 1

‖K−1hhh2‖
(16)

Here, the projections of 2D calibration pattern are all
within the region projected via the below hemisphere, then
the projected point MMMs on a unit sphere, as shown in Fig. 2,
is in front of the center of the unit sphere, so we could
choose µ

µ = sign(H3,3)
1

‖K−1hhh1‖ = sign(H3,3)
1

‖K−1hhh2‖ (17)

In general, the estimated R is not orthogonal due to
noise in data. Therefore, a closest rotation matrix can be
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estimated from R in the sense of the smallest Frobenius
norm[14], which can be used to initialize the rotation ma-
trix.

With (13), a geometric interpretation of (14) can be ex-
plained as in Fig. 4 (see next page). MMMs is the projection
of a spacial point MMM (on the calibration pattern) onto the
unit sphere. mmm on Π is the projection of the point MMMs from
OOOc, and m̃mm on Π̃ is the projection of the point MMMs from OOO.
Π is the catadioptric image plane, Π̃ (parallel to Π) is a vir-
tual image plane, and the principal points of the two image
planes ppp and qqq are both on the optical axis OOOOOOc. This is
because, as shown in Fig. 2, the image plane Π is parallel
to the plane OOOc −XXXcYYY c of the perspective coordinate sys-
tem OOOc −XXXcYYY cZZZc, and the plane OOO −XXXYYY of the sphere
center coordinate system OOO−XXXYYY ZZZ is parallel to the plane
OOOc −XXXcYYY c. From (13), we know that the virtual image
plane for m̃mm is also parallel to the plane OOO −XXXYYY , so the
real and virtual image plane are parallel. Moreover, since
the distance between OOO and Π̃ is the focal length, equal to
the distance between OOOc and Π, the distance between the
two parallel planes is d = ‖OOO −OOOc‖ = ξ.

Fig. 4 The geometric interpretation of equation (14)

Remarks
1) With the calibrated intrinsic parameters, we can

always warp a catadioptric image to a perspective one
through the sphere center OOO with an arbitrarily chosen im-
age plane, the chosen virtual plane in this work and its
parallel planes in front of the sphere center OOO could rectify
all the view from the below hemisphere, but other perspec-
tive planes can only rectify part of the view.

2) If ξ = 0, i.e., the reflection mirror is a plane mirror,
(13) will be changed into

m̃mm ≈ K(RMMM + ttt) = K[rrr1, rrr2, ttt]M̃MM (18)

With at least three images of the calibration pattern under
different orientations by moving either the camera or pat-
tern, a fully calibration can be done[13] without knowing
the FOV or the principal point.

3.4 Nonlinear optimization

Let n be the image number of the 2D calibration plane
and mi be the image point number in the i-th image of the
calibration plane. The calibration is finally optimized by
minimizing the following cost function

min
K,Ri,ttti

n∑
i=1

mi∑
j=1

‖mmmij − m̂mm(K, Ri, ttti,MMM j)‖2 (19)

where m̂mm(K, Ri, ttti,MMM j) is the image of the point MMM j in the
ith image generated with the estimated K, Ri, ttti. Minimiz-

ing (19) can be solved by Levenberg-Marquardt method.
The initial estimation of K, Ri, ttti are given in the above.
The rotations Ri are expressed with the Rodrigues formula.
Since the initial estimation of the principal point is already
accurate enough, it can be fixed during the optimization.

3.5 Our algorithm′s outline

Given the mirror parameter ξ and the FOV, our calibra-
tion algorithm is summarized as follows:

1) Take one or more images of 2D calibration pattern to
cover the most of the catadioptric image.

2) Use the bounding ellipse and FOV to initialize the
intrinsic parameters as described in Sections 3.1 and 3.2.

3) Compute the homography between m̃mmij and M̃MM j us-
ing direct linear transformation (DLT) algorithm with data

normalization[15], then get the extrinsic parameters (Ri, ti)
as described in Section 3.3.

4) Refine all the intrinsic and extrinsic parameters ex-
cept the principal point by optimizing (19) as described in
Section 3.4.

4 Experiments

In this section, experiments with both simulated and real
data are carried out to test our calibration algorithm.

4.1 Using simulated data

The simulated camera has the following intrinsic param-
eter matrix

K =




700 0.8 700
0 710 750
0 0 1


 (20)

The aspect ratio is 0.9859. The image resolution is of
1500× 1500 pixels. Two catadioptric camera settings with
mirror parameters ξ = 0.966 and ξ = 1.0, are considered
respectively. The 2D calibration pattern is a checker pat-
tern containing 5×5 = 25 markers. The size of the pattern
is 44 cm × 44 cm. We generate four movements of the cali-
bration pattern, and the projections are shown in Fig. 5 (a)
with ξ = 0.966 and Fig. 6 (a) with ξ = 1.0. In Figs 5 (a) and
6 (a), the biggest solid circles are the points on the image of
mirror boundary, and the other four types of markers are
the projections of the 2D calibration pattern under four
movements. The ground truths of FOVs for the cameras
with ξ = 0.966 and ξ = 1.0 are 176.2◦ and 180◦, respec-
tively.

Since the FOV provided by the manufacturer is often
an approximation to the true value, we deliberately use
the FOVs as 160◦ for both the camera settings to test
the robustness of our method. The Gaussian noise with 0
mean and standard deviation varying from 0.0 to 5.0 pixels
is added to each of the image points on the bounding el-
lipse and the projected marker image points. At each noise
level, we perform 100 independent trials. The means and
the standard deviations of f, r, s, u0, v0 are computed and
shown in Fig. 5 (ξ = 0.966) and Fig. 6 (ξ = 1.0).

From Figs 5 and 6, the estimated principal points keep
close to the ground truth as noise level increases, so it is
reliable to use the center of the bounding ellipse as the
principal point. In addition, although the estimated focal
lengths before optimization deviate much (about 100 pix-
els) from their ground truths, those after optimization are
very close to the true values, and the estimated aspect ra-
tio and skew factor after optimization are all close to their
ground truths.

In general, the central part of a catadioptric image is
close to a perspective projection, then the extrinsic param-
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Simulated results for a central catadioptric camera with ξ = 0.966 ((a) The image of the simulated calibration grid (The
biggest solid circles are the points on the image of mirror bounding, and the other four types of markers are the projections of 2D
calibration pattern under four movements.); (b)∼(f) The estimated intrinsic parameters)

(a) (b) (c)

(d) (e) (f)

Fig. 6 Simulated results for a central catadioptric camera with ξ = 1.0 ((a) The image of the simulated calibration grid (The
biggest solid circles are the points on the image of mirror bounding, and the other four types of markers are the projections of 2D
calibration pattern under four movements.); (b)∼(f) For the estimated intrinsic parameters)
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(a) (b) (c)

Fig. 7 The calibrated intrinsic parameters for a central catadioptric camera with ξ = 0.966, which is contaminated with Gaussian
noise with 0 mean and standard deviation σξ varying from 0.01 to 0.05. The lines show the intrinsic parameters after optimization.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Rectifications with calibration results ((a) and (b) Two of the catadioptric images; (c) and (d) The initially chosen and
reprojected images of grids with the parameters after optimization; (e) and (f) Rectifications of (a) and (b) with the optimized
intrinsic parameters; (g) and (h) Rectifications of (a) and (b) with the line based calibration method in [5])

Fig. 9 A panoramic image generated with the calibrated intrinsic parameters of our method
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eters may be also estimated from the homography as [13],
which is computed using only central image points. We
did make comparisons using the central part of images for
estimating the extrinsic parameters. As shown in Figs 5
and 6, the estimated focal lengths with central part of the
catadioptric image after optimization deviate much from
the ground truths.

Since the initial focal length is also dependent on the
mirror parameter ξ, we carry out experiments in which the
FOV is deliberately chosen as 160◦ and ξ = 0.966 is con-
taminated with Gaussian noise. The mean of the noise is
equal to 0, and the standard deviation σξ varies from 0.01
to 0.05. Gaussian noise with 0 mean and standard devi-
ation varying from 0.0 to 3.0 pixels are added to each of
the image points on the bounding ellipse and the projected
marker image points. At each noise level, 100 independent
trials are carried out, and the results are shown in Fig. 7. It
can be observed that the intrinsic parameters are still close
to the ground truths as the noise level increases.

4.2 Using real image data

A Nikon CoolPix 990 camera, combined with a hyper-
boloidal mirror designed by Center of Machine Perception
of Czech Technical University, is used. The aspect ratio
of the camera is close to 1 and the mirror parameter ξ is
0.966. The FOV given by the producer is about 217.2◦.

Four images of 2D calibration pattern with the resolution
2048 × 1536 pixels were captured during the movements,
two of which are shown in Figs 8 (a) and 8 (b). In each of the
images, 5× 5 = 25 projected points are selected manually,
and 36 image points on the bounding ellipse of the cata-
dioptric image are chosen by hand. The calibration results
before optimization are f = 502.0, r = 1.0, s = 0.0, u0 =
1041.9, v0 = 777.7, and the results after optimization are
f = 528.6, r = 1.03, s = 1.69, u0 = 1041.9, v0 = 777.7.
The originally chosen and reprojected images of Figs 8 (a)
and 8 (b) with the optimized parameters almost coincide as
shown in Figs 8 (c) and 8 (d). The rectifications of Figs 8 (a)
and 8 (b) are shown in Figs 8 (e) and 8 (f), and the heavily
distorted lines are effectively rectified. Fig. 9 is a panoramic
image generated with the calibrated intrinsic parameters of
our method.

Since there are lines on the 2D calibration pattern, the
line based methods can also be used for intrinsic parame-
ter calibration. For each image, the longest line image is
selected for calibration with the method in [5]. The calibra-
tion results are f = 438.0, r = 0.950, s = 5.4, u0 = 1123.1,
and v0 = 772.7. The rectifications of Figs 8 (a) and 8 (b) are
shown in Figs 8 (g) and 8 (h), and the distortions are not
effectively removed, which could be because of inaccurate
fittings of partial visible conics.

The above simulated and real data experiments both val-
idate the accuracy and robustness of our proposed method.

5 Conclusion

In this paper, we propose an easy calibration method
for central catadioptric cameras using a 2D calibration
pattern. It can be applied to central catadioptric cameras
with all kinds of quadric mirrors. Since the images of the
2D calibration pattern can easily cover the whole catadiop-
tric image, the robustness is enhanced. In addition, the
experiments show that our method is not exigent to the
initialization of intrinsic and extrinsic parameters (again
thanks to the images of the 2D calibration pattern). We
coin our method “an easy calibration” chiefly because our
method needs only capturing one or more images of a 2D
calibration pattern, which is similar to that of Zhang′s

easy calibration method for a perspective camera with a
2D pattern[13].
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Appendix: Focal length estimation in a
geometrical way

In Fig. 3, let θ = ∠OOOOOOcMMMs, and it is obvious that θ <
π

2
.

We have

f = |OOOcppp| =
√

(u− u0)2 + (v − v0)2 cot θ (A1)

In 4OOOOOOcMMMs, by using the cosine rule there is

|OOOcMMMs| =
√
|OOOOOOc|2 + |OOOMMMs|2 − 2 cos(π − φ) |OOOOOOc| |OOOMMMs|

=
√

ξ2 + 1 + 2ξ cos φ (A2)

By applying the sine rule to 4OOOOOOcMMMs, we have

sin θ

|OOOMMMs| =
sin(π − φ)

|OOOcMMMs|
Thus

sin θ = sin φ
|OOOMMMs|
|OOOcMMMs| =

sin φ√
ξ2 + 1 + 2ξ cos φ

It follows that

cot θ =
cos θ

sin θ
=

√
1− sin2 θ

sin θ
=

1√
ξ2+1+2ξ cos φ

(ξ+cos φ)2
− 1

=

1√
η − 1

(A3)

Therefore,
η = sec2 θ (A4)

Substituting (A3) into (A1), we obtain

f =

√
(u− u0)2 + (v − v0)2

η − 1
(A5)

(A4) gives a geometrical explanation of η and (A5) is the
positive solution of (11).


