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Abstract—Sketch-based image retrieval (SBIR) is a long-
standing research topic in computer vision. Existing methods
mainly focus on category-level or instance-level image retrieval.
This paper investigates the fine-grained scene-level SBIR problem
where a free-hand sketch depicting a scene is used to retrieve
desired images. This problem is useful yet challenging mainly
because of two entangled facts: 1) achieving an effective rep-
resentation of the input query data and scene-level images is
difficult as it requires to model the information across multiple
modalities such as object layout, relative size and visual appear-
ances, and 2) there is a great domain gap between the query
sketch input and target images. We present SceneSketcher-v2,
a Graph Convolutional Network (GCN) based architecture to
address these challenges. SceneSketcher-v2 employs a carefully
designed graph convolution network to fuse the multi-modality
information in the query sketch and target images and uses
a triplet training process and end-to-end training manner to
alleviate the domain gap. Extensive experiments demonstrate
SceneSketcher-v2 outperforms state-of-the-art scene-level SBIR
models with a significant margin.

Index Terms—Sketch-based image retrieval, graph convolu-
tional network, scene sketch, fine-grained image retrieval.

I. INTRODUCTION

SKETCHING is a natural and intuitive form of commu-
nication for a human being to express their concepts or

ideas. Using a sketch as query data for image retrieval is an
increasingly important research topic because of the popularity
of touch-screen devices in recent years. Although the research
towards Sketch Based Image Retrieval (SBIR) has spanned
over two decades, most of the existing SBIR methods are
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Fig. 1. Illustration of the whole spectrum of SBIR problems. The proposed
method, focusing on retrieving the fine-grained scene-level images satisfying
the user’s specific requirements via a freehand sketch, is in stark contrast to
those of object-level SBIR methods [1], [2] and those focusing on retrieving
scene-level images of the same scene class [3].

mainly category-level or object-level as illustrated in Fig. 1.
Those category-level SBIR methods mainly aim at searching
for the images belonging to a specific category depicted by
the query input sketch, while those object-level SBIR methods
predominantly focus on retrieving the images having the target
objects with a sketch which usually includes a single free-hand
drawn object.

Scene-level images exist in a large portion of the image data
in real world and more importantly more and more images
would share similar content or capture similar scenes as the
amount of images increases. Despite many conventional SBIR
methods are object-level, i.e., conducting image retrieval using
a sketch containing only a single object instance and simple
background, very few studies have addressed scene-level SBIR
problem [3], [4]. Existing scene-level SBIR works classify
sketches into dozens of scene categories (e.g. bedroom, forest,
ballroom, etc.), and their goal is to retrieve an image of
the same scene category as the query scene sketch [4] (see
the bottom left part of Fig. 1). These methods, together
with those text or image based retrieval methods, are not
able to effectively meet the user’s specific requirements in
some application scenarios, such as searching a target image
having a few airplanes with specific poses and relative size as
shown in the bottom right part of Fig. 1. Therefore, a SBIR
method focusing on fine-grained scene-level image retrieval is
required. Recently, Zou et al. [5] present a scene sketch dataset
with semantic and instance segmentation annotations, named
SketchyScene, and conduct a preliminary study of scene-level
SBIR. Since the goal of the SBIR task in SketchyScene is to
retrieve the specific image corresponding to the input sketch,
it can be seen as fine-grained SBIR to some extent. However,
the retrieval method used in SketchyScene is largely a pilot
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study, which is built upon an object-level SBIR model, and
the images are all cartoon images.

This paper investigates the problem of fine-grained SBIR
at the scene level (see the bottom right part of Fig. 1). Our
method aims to retrieve target images that are consistent with
the scene sketch query input in terms of fine-grained object
instances and scene information, such as object instances’
poses, the relative size and layout of the objects in a scene.
This problem is challenging because modeling the information
across multiple modalities such as object layout, relative size
and visual appearances within a unified network is difficult
and there is a great domain gap between the query sketch
input and target images. To address these challenges, We
propose SceneSketcher-v2, a graph convolutional network
that is capable of fusing hierarchical information of scene-
level sketches and images, including scene-level spatial layout
information, category-level information of objects’ semantic
attributes and instance-level information of objects’ visual
appearance. Specifically, we first use a graph-based representa-
tion to explicitly model each scene sketch and image, and then
leverage an adaptive graph convolutional module to model the
spatial and semantic correlations between object categories.
We finally train the adaptive graph convolutional network and
the visual feature extraction network of sketches and images
in an end-to-end manner through a triplet training process.
Our network can be well generalized to different scene data
because of its favoring flexible graph feature learning. Be-
cause the fine-grained scene-level “sketch-photo” pair database
is scarce, to verify the superiority of our SceneSketcher-
v2, we use modified public scene sketch-photo databases
(SketchyCOCO [6] and SketchyScene [5]) to evaluate our
SBIR method.

Our main contributions can be summarized as follows:

1) We propose a new GCN-based architecture for fine-
grained scene-level SBIR, in which we encode effec-
tive hierarchical scene information for feature embed-
ding, including global layout, category-level semantic
attributes and instance-level visual features. Moreover,
we train the GCN model as well as the visual feature
extraction network in an end-to-end manner through a
triplet training process;

2) We adopt an adaptive graph convolutional module to
model the spatial and semantic correlations between
object categories, which increases the flexibility of our
model for graph feature learning;

3) Extensive experiments show that our SceneSketcher-v2
achieves retrieval performance that exceeds state-of-the-
art SBIR models by a significant margin.

A preliminary version of our work, SceneSketcher, was
published in [7]. Compared to the earlier version, the improve-
ments of this work named as SceneSketcher-v2 are three fold:

1) Instead of choosing each object instance as a graph node
in SceneSketcher, SceneSketcher-v2 sets each object
category as a graph node, which leads to a fixed graph
structure and also allows semantic context of different
object categories to be used for more effective feature
embedding;

2) SceneSketcher-v2 is more general for different scene
representation than SceneSketcher. It employs two ad-
jacency matrices to model the scene layout and the
correlations between different categories and adopts an
adaptive graph for each data sample that denotes its
specific pattern rather than a fixed network topology in
SceneSketcher. Moreover, the graph building is more
powerful in SceneSketcher-v2 where the graph edge
weight takes into account the semantic context between
different object categories, not just the spatial distance
between object instances in SceneSketcher;

3) SceneSketcher-v2 can be trained in an end-to-end man-
ner which can boost the performance of our SBIR
framework. As a comparison, the multi-stage modules
of SceneSketcher can only be trained in a stage-by-stage
manner due to the graph similarity computing process
is non-differentiable.

II. RELATED WORK

A. Sketch-Based Image Retrieval (SBIR)

Aiming at using a free-hand sketch to find a specific image
from a gallery of natural photos, sketch-based image retrieval
has been extensively studied since 1990s [8], and has attracted
more attention recently due to the proliferation of touch
devices. Most existing SBIR works focus on category-level
image retrieval, where the goal is to search the images from
the same category. They usually extract representative and
shared hand-crafted image descriptors (e.g. SIFT, HOG, etc.)
to conduct shape matching between sketches and edge maps
of natural images [9], [10], [11], [12]. Eitz et al. [13] utilize
descriptors based on the bag-of-features approach for SBIR
and present a benchmark for evaluating the performance of
large-scale SBIR systems. Their later works include inheriting
the GF-HOG and BoVW paradigm for SBIR and extending
it by proposing a bag-of-regions (BoR) representation which
decomposes images into region representations at multiple
scales [10]. Several deep learning based SBIR methods have
been introduced recently [14], [15], [16], [17], [18], [19] and
set new records in the major SBIR benchmarks. The first large-
scale dataset of sketch-photo pairs is proposed by Sangkloy et
al. [2], which is used to train cross-domain neural networks
and set up an object-level SBIR benchmark. Hu et al. [20]
use a semi-supervised metric learning method for anchor
graph hashing to conduct SBIR. Zhang et al. [21] propose
to discover the object representative landmarks and learn the
discriminative structural representations for sketch recognition
and SBIR.

There is a growing number of studies addressing the zero-
shot sketch-based image retrieval (ZS-SBIR) task, which can
conduct the retrieval task on unseen object classes [22]. ZS-
SBIR is treated as a domain adaptation problem [23] in most
circumstances. Yelamarthi et al. [24] consider SBIR as the
task of generating additional information that is absent in the
sketch in order to retrieve similar images, and they propose
a generative ZS-SBIR model by taking sketches as inputs
and filling in the missing information stochastically for image
search. Deng et al. [25] employ cross-reconstruction loss and
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propose a progressive cross-modal semantic network for ZS-
SBIR. Dutta et al. [26] aim to address any-shot (i.e., zero-
shot and few-shot) SBIR. Although extensive efforts have been
made to make SBIR more efficient and practical, these coarse-
grained SBIR works only focus on whether the retrieved image
has the same category as the input sketch but the instances’
visual details and characteristics gain little attention.

B. Fine-Grained Sketch-Based Image Retrieval (FG-SBIR)

Compared with traditional query form of text or tags, a key
advantage of sketch query is that sketch can depict outlines
and main characteristics in a simple way. However, these
advantages cannot be achieved in category-level SBIR since
it only cares if the category of the retrieved image is correct
and overlooks the detailed characteristics. Compared to object-
level SBIR, FG-SBIR requires the retrieved images contain
fine-grained details described in the input scene sketch. Yu
et al. [1] investigate the problem of instance-level FG-SBIR
via a deep triplet-ranking model and introduce a database of
sketch-photo pairs with fine-grained annotations. They later
expanded this database to 4 datasets, including 3,000+ photos
and 8,000+ sketches, accompanied by 32,000+ human triplet
annotations to train a better triplet retrieval network [27].
Rather than focusing on feature extraction for cross-domain
matching, Song et al. [28] instead propose to learn semantic
attributes and deep features in a complementary way. They
further construct a spatially aware model which combines
coarse and fine semantic information in [29]. Li et al. [30]
aim at bridging the image-sketch gap via combine low level
information with high level object parts and attributes, and
they collect a dataset with 304 photos and 912 sketches, where
each sketch and image is annotated with its semantic parts and
associated part-level attributes. In order to retrieve the target
image with the least number of strokes possible, Bhunia et
al. [31] propose an on-the-fly FG-SBIR framework based on
a reinforcement learning scheme. Though a growing number of
FG-SBIR research works have been proposed in recent years,
those works focus on retrieving a single object, which cannot
be applied to many real-world applications. In this paper, we
explore the problem of scene-level fine-grained SBIR instead,
which utilizes local features such as object instances and their
visual details, as well as global context, e.g. scene layout.

In addition to the fine-grained scene-level SBIR addressed
in this paper, other related fine-grained computer vision tasks
include fine-grained classification and retrieval using other
modalities, such as image-text fine-grained retrieval [32],
image-video fine-grained cross-modal retrieval [33], image-
3D fine-grained tasks [34], etc. Targeting fine-grained visual
classification, Du et al. [35] combine a progressive training
framework to learn category-consistent features at specific
granularities. Huang et al. [36] tackle fine-grained image
categorization under the few-shot setting. Wei et al. [37]
conduct a systematic survey of fine-grained image analysis
studies with deep learning methods, and consolidate fine-
grained image recognition and retrieval as two fundamental
research areas in the FG image analysis field.

C. Scene-Level Sketch-Based Applications

Scene sketch have been studied and applied in scene image
composition [38], scene image synthesis [6], scene image
retrieval (not fine-grained) [3], and scene sketch semantic
segmentation [5]. Compared to Sketch2Photo [38], which
composites a photo-realistic scene image with a hand-drawn
sketch and text as input and retrieves initial candidates of
object instances for later scene image blending, our work aims
to retrieve a specific image from an image gallery instead
of compositing a synthesized image. Dey et al. [39] propose
a cross-modal deep network to conduct multi-object image
retrieval, which can use both sketches and text as inputs. Cas-
trejon et al. [3] collect a cross-modal scene dataset and propose
a cross-modal scene data representation learning framework
for cross-modal retrieval tasks (including real images, clip art,
sketches, spatial text and descriptions). Xie et al. [4] conduct
a ZS-SBIR task on this cross-modal scene dataset by utilizing
the overall visual features of scenes. Zou et al. [5] present
a scene sketch dataset named SketchyScene with semantic
and instance segmentation annotations, and conduct a pilot
study of scene-level SBIR using an object-level SBIR method
[1]. Although the goal of SBIR in SketchyScene is similar to
the fine-grained scene-level SBIR in this paper, SketchyScene
mainly proposes a baseline using an object-level SBIR method
[1], and does not exploit the rich scene context for SBIR.

D. Image Retrieval with Graph Convolutional Networks

Graph convolutional networks (GCNs) [40] are effective
neural network architectures to model and process graph
data, and they have been used in many applications such
as social recommendation [41], traffic prediction [42], action
recognition [43], layout generation [44] and text matching [45]
in the last few years. Jia et al. [46] develop CA-GCN for
personalized image retrieval, which leverages user behavior
data in a GCN model to learn user and image embeddings
simultaneously. Chen et al. [47] propose a multi-label image
classification model based on GCN and a re-weighted scheme
to capture the label dependencies of co-occur objects in an
image. In the realm of SBIR, Zhang et al. [48] utilize GCN
in zero-shot SBIR task, and propose SketchGCN model to
use both visual and semantic information, which enhances the
generalization ability of the retrieval model.

Compared to these approaches, our method leverages multi-
modal features of object categories (i.e. global layout, visual
features and semantic features) to construct graph nodes and
learn adaptive graphs for encoders.

III. METHODOLOGY

A. Overview

The architecture of our proposed network is illustrated in
Fig. 2. Our method mainly consists of a graph generation
module, an adaptive graph convolution module and a triplet
similarity module. The overall network extracts feature em-
beddings of scene sketches and images, and feeds them to a
triplet ranking loss to enforce the distance in the feature space
reflects how close scene sketches and images are in terms of
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Fig. 2. Framework of the proposed SceneSketcher-v2. Our network mainly consists of a graph generator, an adaptive graph encoder module and a triplet loss
for training. We first construct graphs for the input scene sketch and the images to be retrieved, and then utilize our adaptive GCNs for feature encoding of
the graphs. Finally, we conduct retrieval using the extracted graph features via a triplet loss.

global layout, appearance and semantic information. During
the training process, each time the network takes a query scene
sketch, a positive image and a negative image as input. In
order to model the key scene context in fine-grained scene-
level SBIR, we adopt adaptive graph convolutional networks
(GCNs) as the graph encoders, which integrate the hierarchical
information in scene sketches and images, including global
scene visual features, global layout, semantic correlations
between object categories, and projected features of visual and
location features of each object category.

B. Graph Initialization

We employ a weighted, undirected scene graph to model
the global layout, the semantic correlation and the visual
appearance (size, pose and other fine-grained details) of the
object instances in a scene sketch or a scene image explicitly.
Our scene graph can be formulated as G = (N,E), where
N = {ni} is the node set and E = {ei,j} is the edge set, and
ei,j = (ni, nj) is the edge connecting nodes ni and nj . The
category set of the nodes in the graph is denoted as C = {ci},
where ci is the category label of node ni.

a) Node Construction: In this paper, we model each
object category ci as a node ni in the graph G. Fig. 3 illustrates
an overview of the graph node initialization process. Given an
object category ci, we construct a corresponding node ni by
integrating the characteristics of all the instances {oij} from
the same object category ci. There are two types of information
in each node ni, i.e., the visual features vi and the spatial
position pi. Specifically, we resize the bounding boxes of the
instances to a fixed size of 128× 128 and adopt Inception-V3
[49] to extract a 2048-d visual feature vij for each instance.
Then we concatenate the visual feature vij of instance oij with
its spatial position pij (i.e., the coordinates of the upper left
and bottom right corners of its bounding box). Finally, for each

graph node ni representing an object category, we get a 2052-
d fused feature xi by fusing the characteristics of instances
{oij} with the same category ci via a perception layer (See
Fig. 3). In the experiment, when the number of instances in a
certain category is more than three, we choose the top three
instances with the max sizes to construct the node for this
category.

b) Edge Construction: The object nodes are connected
with undirected weighted edges, and the edge weight between
a pair of object nodes shows their spatial correlation. For each
category node ni, we define its position pi by computing the
coordinates of the center point of the bounding boxes of all
instances in the category ci. Each node position pi is denoted
as a 2-d vector and the coordinates are normalized to (0, 1).
Given two nodes ni and nj with positions pi and pj , we
define the edge weight Ai,j ∈ (0, 1) between them based on
normalized Euclidean distance as follows:

Ai,j = 1−Di,j (1)

where Di,j = ||pj − pi||2 is the Euclidean distance of the
spatial position of node ni and node nj .

C. Graph Convolutional Networks

After generating scene graphs for sketches and images,
we adopt GCNs to learn node-level representations for our
scene graph where we update the node features by propagating
information between nodes. The l-th layer of a GCN takes a
feature matrix Hl−1 and the corresponding adjacency matrix
A = {Aij} as inputs and learns a function f(·, ·) to extract
features on a graph G = (N,E). The l-th layer of the GCN
can be formulated as

H(0) = {xi}ni=1 (2)
H(l) = f(H(l−1),A), l > 1 (3)
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Fig. 3. Illustration of our graph node construction. We model each object category as a node in the graph. For each object instance from the same category, we
concatenate the extracted visual feature and its spatial position. We then get a graph node with a 2052-d fused feature for each object category by integrating
the features of all the object instances from the same category through a fully-connected layer.

Then we adopt the propagation rule introduced in [40], and
the feature extraction function f(·, ·) can be written as

f(H(l),A) = σ(D̂
− 1

2 ÂD̂
− 1

2 H(l)W(l)) (4)

where σ(·) is the leaky ReLU activation function, Â = A+ I,
and D̂ is the diagonal node degree matrix of Â, and W(l) is a
weight matrix to be learned.

We denote the outputs of the last layer of graph convolution
networks for sketches and images to be two scene graph
embeddings GS and GI , respectively.

D. Adaptive Graph Convolutional Module

Our previous SceneSketcher [7] use a fixed single graph in
the graph convolutional network for both training and testing
stages, which is not ideal to model the semantic relationships
and the dependency of object categories. Inspired by the
spatial attention module in 2SA-GCN [50] and the temporal
attention module in STA-GCN [51] that were designed for
action recognition, we adopt an adaptive graph convolution
module with a powerful attention mechanism for our fine-
grained scene-level SBIR task. In order to integrate different
aspects of graph structures, we use the sum of three adjacency
matrices as the adjacency matrix in Eq. (4), which represents
three different graph structures, i.e., a fixed adjacency matrix
A1 that denotes the category-level characteristics and spatial
layout of the scene sketch, a semantic adjacency matrix A2

modeling the correlations and dependencies between different
categories, and a learnable adjacency matrix A3 denoting the
unique pattern of each sketch-photo dataset. The construction
process of the adjacency matrices is as follows:

1) As for A1, we use the original spatial graph adjacency
matrix in Eq. (1);

2) In order to effectively capture the correlations between
object categories, we use a semantic graph A2 to model
the semantic correlation of the category labels. Specifi-
cally, the category label ci of each node is encoded as a

300-d vector c̃i by Word2Vec [52], and then we use the
cosine distance between them to model the correlation
of the two nodes;

3) The third matrix A3 is a trainable matrix. Compared
to A1 and A2 which are both fixed after initialization,
the adjacency matrix A3 can be learned during the
training process. In this data-driven way, the model
can learn a specific graph that can help to achieve
better performance of fine-grained scene-level task on
a particular dataset.

We show the overall architecture of our adaptive graph
convolutional layer in Fig. 4. Given the input scene sketch,
we first get a graph feature map fin of N × (fv+4)-d via our
node construction module (see Sec. III B), where fv denotes
the size of the extracted feature of the visual feature extraction
network. And we also extract a 1 × N global visual feature
of the whole scene sketch using Inception-V3. Then we use
graph convolutional layers to embed fin with the sum of the
proposed three adjacent matrices into an N×C graph feature.
Finally, the N ×C graph feature and the 1×N global visual
feature are multiplied into a scene-level feature vector of the
size 1× C.

Compared with the graph network in SceneSketcher [7] in
which the different scene graphs output graph embeddings
with variable sizes, our proposed adaptive graph convolu-
tional module produces fixed-size feature vectors which can
be directly fed into the later triplet ranking network. Our
adaptive graph convolutional module enables an end-to-end
training process for both the GCN layers and the visual feature
extraction networks. As a comparison, the graph embeddings
in SceneSketcher [7] need to be further compared with a non-
differentiable graph matching strategy and the parameters of
its visual feature network are fixed after initialization, thus the
extracted features may not be optimal for feature embedding.
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Fig. 4. Illustration of the adaptive graph convolution module. Given the input
scene sketch, we can embed it into a 1× C feature fout with our adaptive
graph convolution module by integrating the global visual feature, the fused
feature fin of each category and the graph adjacency matrices {Ai}3i=1 of
categories. N is the number of nodes in the graph, C is the output dimension
of the GCN layers, and fv is the size of instances’ visual feature extracted
by the convolutional layers.

E. Loss Function

We use triplet loss to update our fine-grained scene-level
SBIR framework. The input of our SceneSketcher-v2 is a
triplet (S, I+, I−), where S is a scene sketch, I+ is the
corresponding image of S, and I− is an image of a different
scene. We describe the construction of our loss function as
follows.

As evidenced by pioneering SBIR networks [1], [27], the
triplet ranking loss is able to express fine-grained appearance
details and relationships of sketches better than Siamese loss
[2]. The goal of the triplet loss is to enforce the embedding
features of two examples with the same label to be close to
each other and the embedding features of two examples with
different labels far away. The triplet loss Ltri of a given triple
(S, I+, I−) can be computed by

Ltri = max(d(S, I+)− d(S, I−) +m, 0) (5)

where d(·, ·) is the distance function in the embedding space,
and m is a margin between the anchor-positive distance
and the anchor-negative distance, which is set to 0.4 in our
experiments.

With three scene graph embeddings GS , GI+ and GI− of
the triple (S, I+, I−), we define d(S, I+) and d(S, I−) of
Eq. (5) by computing the Euclidean distance between them.

IV. EXPERIMENTS

A. Datasets

Although several sketch datasets [53], [54], [2], [1], [5],
[3] have been constructed for SBIR or other sketch-oriented
applications (see Fig. 5), none of them fit our problem. They
either just contain a single object instance in one photo, or
no fine-grained annotations of objects are available. We show
several examples of the existing sketch databases in Fig. 5.

Object-level sketch datasets. TU-Berlin [53] and Quick-
Draw [54] only contain sketches without photos, thus they
cannot be used in SBIR task. The Sketchy Database [2]
was originally used for object-level SBIR, where there is a
single object instance in each sketch or image. TU-Berlin
Extended contains photos of the same classes of the TU-
Berlin dataset, which is a main benchmark dataset for coarse-
grained sketch-based image retrieval; QuickDraw-Extended
proposed in [55] contains photos of the same classes of the
QuickDraw sketches; Sketchy-Extended was implemented by
Shen et al. [22] and Yelamarthi et al. [24], and these three ex-
tended datasets are commonly used in zero-shot SBIR. QMUL
Shoe&Chair dataset [1] is the first dataset introduced for fine-
grained SBIR task, containing a few hundred sketch-photo
pairs. Although QMUL Shoe&Chair dataset [1] facilitates
the fine-grained sketch-related applications, all the sketches
and images in this dataset have single instances and clean
backgrounds, thus it cannot be used in our scene-level SBIR
task. Moreover, there are only two object classes (shoes and
chairs) in QMUL Shoe&Chair dataset, which is insufficient
for large-scale SBIR.

Scene-level sketch datasets. SketchyScene [5], CMPlaces
[3] and SketchyCOCO [6] are the three available scene-level
sketch datasets. SketchyScene was originally used for the
scene sketch segmentation task and is not suitable to be
directly used to train and evaluate our fine-grained scene-level
SBIR network. Though SketchyScene contains large amount
of sketch-image pairs, the images of SketchyScene are all
cartoon clips, while the focus of our work is to retrieve natural
photos. Moreover, SketchyScene does not contain the bound-
ing box or object instance segmentation annotation in images,
thus it cannot offer the visual feature and spatial informa-
tion of object instances for our SceneSketcher-v2 framework.
CMPlaces was originally used for category-level cross-modal
retrieval. It only contains scene-level category labels, thus
cannot be used for our fine-grained retrieval task either. On
the one hand, it does not contain paired image and sketch
data. On the other hand, it does not contain object instance
segmentation annotations as in the SketchyScene database.
SketchyCOCO is a fine-grained scene-level sketch dataset
containing sketch-image pairs, and it is designed for sketch-
based image synthesis. Most of the images in SketchyCOCO
only contain single foreground object, and the correspondences
between objects in sketches and images are usually inaccurate,
therefore, SketchyCOCO is not an ideal dataset for fine-
grained scene level SBIR.

In our experiment, we modified existing sketch databases
SketchyCOCO [6] and SketchyScene [5] for evaluations.
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Fig. 5. Examples of the existing sketch databases.

a) SketchyCOCO-SL: We collect a scene sketch-image
dataset (named SketchyCOCO-SL, where we use “SL” to
emphasize “scene-level”) by modifying SketchyCOCO [6],
and utilize the scene sketch dataset for our fine-grained scene-
level SBIR task. SketchyCOCO is constructed for sketch-based
image generation task, containing over 14,000 scene-level
sketch-photo pairwise examples, but most of them only contain
one foreground instance. We use sketch-photo pairs containing
more than one object instance from SketchyCOCO, that is
1,225 scene sketch-photo pairs in total, covering 14 object
categories (bicycle, car, motorcycle, airplane, traffic light, fire
hydrant, cat, dog, horse, sheep, cow, elephant, zebra, giraffe).
We split SketchyCOCO-SL into training and testing sets, each
containing 1,015 and 210 scene sketch-image pairs. The first
two columns of the last row of Fig. 5 shows two examples
of SketchyCOCO-SL dataset. We display two samples with
multiple object instances, and our fine-grained scene-level
SBIR models are needed to differentiate a specific scene.

b) SketchyCOCO-SL Extended: We extend
SketchyCOCO-SL with natural images from COCO-stuff
[56] to form a larger image gallery, named SketchyCOCO-SL
Extended, to further investigate the performance of our
method. We select 5,000 natural images, the objects of which
are within the 14 categories in SketchyCOCO-SL. These
natural images do not have corresponding sketches in the
SketchyCOCO-SL dataset and are not used in our training
process. Then we combine them with the images of the
testing dataset in the SketchyCOCO-SL dataset. In total, there
are 210 sketches and 5,210 images in the testing set.

c) SketchyScene: SketchyScene [5] is a scene-level
sketch dataset designed for segmentation tasks, and a pilot
study of scene-level SBIR also has been conducted on it. In
this work, we use the same 2,472 and 252 pairs of sketch-

photo data as SketchyScene [5] for evaluation.

B. Implementation Details

We adopt the Yolo-V4 object detector [57] to obtain the
instances’ bounding boxes in sketches and images. In order to
extract object instances in scene sketches, we use the training
set of SketchyCOCO-SL to train a Yolo-V4 object detector,
and we use the trained Yolo-V4 model to obtain the instances’
bounding boxes in scene sketches during testing. Similarly,
for the SketchyScene dataset, we select 150 images from the
training set of SketchyScene, manually label the bounding
boxes of the object instances, and then train a Yolo-V4 network
to detect the object instances in the images for retrieval.

As mentioned in the Node Construction part in Sec. III-B,
if the number of instances in a certain category is more than
three, we choose the top three instances with the max sizes
to construct the node for this category. We have conducted
experiments to analyze the SBIR performance with respect
to the maximum number of instances to be retained for
each category in our model. We set the maximum number
of instances in a certain category as three, four, and five,
respectively, and we have observed that the network obtains
the best retrieval performance when setting the maximum
number of instances in a certain category as three. And the
performance is almost reaching a steady state over all the
three models. This may be because over 94% of the scene
sketches in the SketchyCOCO-SL database contain no more
than 3 instances of the same category. Furthermore, the max
number of instances in a certain category can be regarded as a
hyper-parameter used in the graph node construction process,
and it can be modified according to the sketches and images
of different databases.

C. Evaluation Metrics

We adopt a standard and the most commonly used evalua-
tion metric for retrieval as [1], recall at rank K (Recall@K),
which is computed as the percentage of test queries where the
target image is ranked within the top K retrieved images.

D. Comparison with Baselines

We show several fine-grained SBIR examples with our
method on the SketchyCOCO-SL Extended dataset in Fig. 6
and on SketchyScene dataset in Fig. 7. For each query sketch,
there are typically a handful of visually very similar photos;
since in this paper our goal is to conduct fine-grained scene-
level SBIR, the lower-rank accuracy is a better indication on
how well the model is capable of distinguishing fine-grained
subtle differences between candidate photos. Some sketches
do not match the photos exactly in the SketchyCOCO and
SketchyScene dataset, thus there are cases that no images in
the database can fully match the input sketch.

In the following, we also compare our model with sev-
eral state-of-the-art (SOTA) using hand-crafted features and
deep learning based features. (1) Baselines using hand-
crafted features include HOG-BoW+RankSVM [11] and Dense
HOG+RankSVM [58]. We first compare our method with
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TABLE I
COMPARISON OF SCENE-LEVEL SBIR PERFORMANCE WITH EXISTING SBIR METHODS ON THE SKETCHYCOCO-SL DATABASE (210 TESTING IMAGES),
SKETCHYCOCO-SL EXTENDED DATABASE (5,210 TESTING IMAGES), AND SKETCHYSCENE DATABASE (252 TESTING IMAGES). THE MISSING VALUES

INDICATE THE RECALLS OF THE SBIR METHODS ARE CLOSELY TO ZERO.

Dataset Method Recall@1 Recall@5 Recall@10

SketchyCOCO-SL

HOG+BoW+RankSVM [11] 0.48 1.43 4.76
Dense HOG+RankSVM [58] 0.48 3.81 5.71
Sketch-a-Net+RankSVM [59] 0.48 3.33 4.76

Sketch me that shoe [1] 6.19 17.15 32.86
DSSA [29] 0.48 3.81 7.62

SketchyScene [5] 1.43 4.76 8.57
SceneSketcher [7] 31.91 66.67 86.19
SceneSketcher-v2 68.10 87.62 95.24

Dataset Method Recall@10 Recall@50 Recall@100

SketchyCOCO-SL Extended

HOG+BoW+RankSVM [11] 0.48 0.48 0.48
Dense HOG+RankSVM [58] - 0.95 1.91
Sketch-a-Net+RankSVM [59] - 0.95 2.86

Sketch me that shoe [1] 1.90 6.19 8.57
DSSA [29] - 0.95 1.90

SketchyScene [5] 0.48 0.95 2.86
SceneSketcher [7] 38.10 68.10 82.86

SceneSketcher-v2 Recall@1 Recall@5 Recall@10
54.76 68.10 71.90

Dataset Method Recall@1 Recall@5 Recall@10

SketchyScene

HOG+BoW+RankSVM [11] - 3.20 5.60
Dense HOG+RankSVM [58] 0.80 2.80 4.80
Sketch-a-Net+RankSVM [59] 0.80 2.00 3.20

Sketch me that shoe [1] 13.20 29.20 38.00
DSSA [29] 13.60 28.00 39.60

SketchyScene [5] 13.60 24.40 32.40
SceneSketcher [7] 10.00 23.20 41.20
SceneSketcher-v2 23.60 45.60 58.00

HOG-BoW+RankSVM. HOG-BoW descriptor is a widely-used
visual feature for SBIR [60], [11]. We first extract HOG
features from each image, and feed them to the BoW (Bag-
of-Words) framework for feature encoding. Then we feed the
features to train a RankSVM model to rank the results as
[61]. During the comparison, we use the same triplets for
training as those in the experiment of our method. We also
compare our method with Dense HOG features-based method.
We follow [1] to extract Dense HOG features, in which dense
HOG features are extracted by concatenating HOG features
over a dense grid [58]. (2) Baselines using deep learning
based features include Sketch-a-Net+RankSVM [59], Sketch
me that shoe [1], DSSA [29], and SketchyScene [5]. In Sketch-
a-Net+RankSVM [59], we extract deep features using the
Sketch-a-Net model and feed them to RankSVM to train a
SBIR model. In order to compare Sketch me that shoe [1],
we adopt a deep triplet ranking model for instance-level fine-
grained SBIR, where free-hand sketches are used as queries
for instance-level retrieval of images. Due to the lack of fine-
grained scene-level SBIR models, we can only compare with
the existing object-level SBIR methods mentioned above. To
the best of our knowledge, SceneSketcher-v1 published in
ECCV 2020 [7] is the only fine-grained scene-level SBIR
model. Besides, Zou et al. [5] present a closely related work,
where they construct a scene sketch dataset and conduct a
preliminary study of scene-level SBIR based on a similar
triplet ranking network proposed in [1]. We also compare our
method with the SBIR method used in SketchyScene.

Table I shows the comparison of the retrieval recalls with
our model and the compared methods. The results indicate
that: (1) Our model achieves significantly higher recall than
the other baselines on all three datasets, which demonstrates
that our method is effective. (2) Baselines in Table I use hand-
crafted image descriptors ([11], [58]) or deep features ([59],
[1], [29], [5]) to conduct shape matching between sketches and
edge maps of natural images. They are all designed for single
object retrieval, thus produced poor results on multi-objects
dataset. Deep learning based models are in general stronger
compared with traditional hand-crafted features designed for
SBIR. (3) Deep learning based models designed for SBIR with
a single object (e.g. Sketch me that shoe [1], DSSA [29], and
SketchyScene [5]) get poor performance on SketchyCOCO-
SL dataset and SketchyCOCO-SL Extended dataset. However,
compared to traditional methods, the recalls of these deep
learning based models improve significantly on SketchyScene
dataset, which may be because these three methods conduct
SBIR between input sketches and the edge maps extracted
from images, and the photos in SketchyScene are all cartoon
images which makes edge map extraction more easier. Sketch
me that shoe [1] is a more related SOTA SBIR model, which
is also the first work on fine-grained SBIR task. (4) We also
compare our method with SceneSketcher [7]. The Recall@1
with our method is about 37%, 16% and 13% higher than those
with SceneSketcher on SketchyCOCO-SL, SketchyCOCO-SL
Extended and SketchyScene datasets, respectively. We show
the visual comparison of scene-level SBIR results with our
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Fig. 6. Top-10 fine-grained scene-level SBIR results with our method. The true matches are highlighted with red borders.
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Fig. 7. Top-5 fine-grained scene-level SBIR results with our method on
SketchyScene dataset. The true matches are highlighted with red borders.

Fig. 8. Comparison of scene-level SBIR results with our method and
SceneSketcher [7]. We show four panels. In each panel, (a) shows the results
of SceneSketcher-v2, (b) shows the results of SceneSketcher. The ground truth
matches are highlighted with red borders.

method and SceneSketcher in Fig. 8.

E. Ablation Study of SceneSketcher-v2

Our fine-grained scene-level SBIR method adopts an adap-
tive GCN to fuse hierarchical information of scene sketches
and images, including category nodes fusing instance-level
characteristics with the same category label, graph embedding
representing category-level overall information and correla-
tion, and image attention representing global layout feature
of scene. In order to demonstrate the contribution of each
component, we compare our full model with the following
three models:

1) Graph only (average fusion). To investigate the effect of
the fused feature of the instances of the same object cate-
gory in the node construction (See Section III-B), we use
the average feature of the instances of the same object
category to construct the category node for comparison.
We remove the fully-connected layer in Fig. 3 and get
the category nodes by directly averaging the features of
the instances of the same category. Moreover, the global
scene visual feature is not included. The rest parts of this
model are the same as our full model.

2) Graph + global (average fusion). This model is similar
to Graph only (average fusion), but the global scene
visual feature is used as our full model.

3) Graph only (learned fusion). To investigate the effect of
the global scene feature in the adaptive graph convolu-
tion module (See Fig. 4), we remove the global scene
visual feature from our full model, and use the same
graph encoder as our full model. The node construction
procedure is the same as we described in Section III-B.
We fuse the features of instances with the same object
category in a learned way via a fully-connected layer to
construct the category node in our scene graph.

Table II shows the performances of our full model and
the three models above on the fine-grained scene-level SBIR.
We can observe that: (1) Our global scene visual feature
and the adaptive GCN module contribute greatly to
the final performance of our SceneSketcher-v2. The only
difference between Graph + global (average fusion) (Full
model) and Graph only (average fusion) (Graph only (learned
fusion)) is that the former also employs additional global
scene visual feature. Graph + global (average fusion) (Full
model) outperforms Graph only (average fusion) (Graph only
(learned fusion)) on all the three datasets. Besides, Graph
only (learned fusion) models can also obtain relatively good
performance, showing the effectiveness in applying GCN to
the fine-grained scene-level SBIR task. (2) The way to fuse
instance features and construct category nodes has a great
impact on the retrieval performance of the model (See
Graph only (average fusion) vs. Graph only (learned fusion),
and Graph + global (average fusion) vs. Full model). Instead
of fusing instance features using manually defined feature
fusion rules (e.g., averaging instance features with the same
category label to get the category node feature), we construct
our category nodes by fusing the visual features and positions
of the instances via a learned way (the fully-connected layer
in Fig. 3), thus get better features of each object category and
facilitate SBIR.

F. Comparisons between Adjacency Matrices

We also compare the effect of different adjacency matrices
in the adaptive graph layer (See Table III). From the SBIR
results, we can see that: (1) The three components of the
adjacency matrices all contribute to the excellent retrieval
performance of our final model. (2) Although the adjacency
matrix A1 which is a fixed graph structure denotes the spatial
layout of the scene sketch performs poor when working solely,
it can enhance the SBIR performance when A1 works together
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TABLE II
COMPARISONS OF DIFFERENT COMPONENTS.

SketchyCOCO-SL Recall@1 Recall@5 Recall@10
Graph only (average fusion) 48.09 66.67 74.76

Graph + global (average fusion) 62.38 77.62 85.71
Graph only (learned fusion) 60.95 78.57 84.76

Full model 68.10 87.62 95.24
SketchyCOCO-SL Extend Recall@1 Recall@5 Recall@10

Graph only (average fusion) 43.33 56.19 58.57
Graph + global (average fusion) 48.57 60.00 66.19

Graph only (learned fusion) 55.71 60.95 66.19
Full model 54.76 68.10 71.90

SketchyScene Recall@1 Recall@5 Recall@10
Graph only (average fusion) 18.80 37.60 44.80

Graph + global (average fusion) 19.20 40.00 48.80
Graph only (learned fusion) 20.00 40.40 49.60

Full model 23.60 45.60 58.00

with A2 and A3. Conceptually, the spatial layout between
instances alone is not enough to determine the similarity
between scenes, but it can be used as an inherent constraint
for SBIR. (3) The model achieves good results when working
alone with A2 or A3. Compared to the performance with A3,
the retrieval model performs better with A2. Since A2 provides
category semantic information, we can conclude that semantic
information is a key clue in the scene-level SBIR task.

TABLE III
COMPARISONS USING DIFFERENT ADJACENCY MATRIX IN THE ADAPTIVE
GRAPH LAYER. THESE THREE ADJACENCY MATRICES, A1 , A2 , AND A3 ,

ARE DESIGNED TO MODEL SPATIAL, SEMANTIC, AND ADAPTIVE
INFORMATION, RESPECTIVELY.

SketchyCOCO-SL Recall@1 Recall@5 Recall@10
A1 13.33 34.76 51.90
A2 57.14 67.14 74.29
A3 53.80 61.43 70.00

A1 + A2 67.62 82.86 88.57
A1 + A3 67.14 82.86 91.90
A2 + A3 60.48 76.67 86.67

Full model 68.10 87.62 95.24
SketchyCOCO-SL Extend Recall@1 Recall@5 Recall@10

A1 7.62 13.33 16.67
A2 53.33 56.19 57.14
A3 45.71 58.57 61.42

A1 + A2 44.76 67.62 70.00
A1 + A3 48.09 63.33 68.10
A2 + A3 45.71 62.86 66.19

Full model 54.76 68.10 71.90
SketchyScene Recall@1 Recall@5 Recall@10

A1 19.60 35.60 45.20
A2 20.00 37.60 44.40
A3 20.80 36.00 44.00

A1 + A2 20.80 39.60 47.60
A1 + A3 21.20 41.80 51.20
A2 + A3 22.00 42.40 55.20

Full model 23.60 45.60 58.00

G. Fine-Grained Retrieval

To analyze the performance of our fine-grained scene-level
SBIR, we pick some images that are extremely similar in
overall layout of sketches, category of objects, and their
position and shape. We pick up 10 extremely similar images
of elephants (or zebras) from our SketchyCOCO-SL Extended
dataset. Corresponding scene sketches are used to conduct

the SBIR task. We aim at exploring the sorting results of
the 10 images with different sketches as inputs. We also use
our previous SceneSketcher [7] to conduct image retrieval
on these elephant and zebra images. Results are shown in
Fig. 9. Although both SceneSketcher and SceneSketcher-v2
can retrieve the desired fine-grained images effectively, our
SceneSketcher-v2 is able to capture more details of object
positions and relationships.

H. Application

As an example, we demonstrate that our method can enable
the application of sketch-based interior scene retrieval. In the
following, we conduct a pilot study of this application.

To the best of our knowledge, there is no large-scale
indoor scene sketch-image paired data publicly available. In
order to train and test our model, we selected indoor scene
images of furnished rooms from a large-scale indoor scene
dataset, 3D-FRONT (3D Furnished Rooms with layOuts and
semaNTics) [62] and made their corresponding scene sketches.
Since the appearance of furniture in each indoor scene image
varies greatly and no pattern can be followed to automatically
generate a large number of sketches, we construct the dataset
manually. In this pilot study, we first selected 110 indoor
scene images of furnished rooms from 3D-FRONT. Then
we generate the sketches of the selected scene images via
composition of single instance sketches as [5]: (1) we firstly
select sketches of object categories contained in those scene
images from TU-Berlin [53]; The scene objects in 3D-FRONT
are clustered into 7 major categories (i.e. cabinet, bed, chair,
table, sofa, stool and lighting), and the object categories
of sketches selected from TU-Berlin include 5 classes (i.e.
bed, chair, table, couch and tablelamp). Since the categories
“sofa” and “lighting” do not exist in TU-Berlin, we select
the sketches of similar object categories from “couch” and
“tablelamp” instead. (2) we choose the appropriate object
sketch for each object instance, and construct scene sketches
by placing them in proper places using dragging, rotation, and
scaling operations under the guidance of the reference image.

We get 110 pairs of “sketch-image” indoor scene data. We
use 95 pairs of “sketch-image” data to train our retrieval
model, and the rest 15 pairs of sketches to find the scene
images from the 110 images. We obtain 13.33% on recall@1,
46.67% on recall@5, and 60.00% on recall@10 on the 110
testing images. In addition, we constructed another image
gallery for evaluation by selecting additional 500 furnished
room scene images from the 3D-FRONT dataset. We also
use the 15 sketches to retrieve scene images from the indoor
image gallery with 515 images (combining 15 relevant images
with the additional 500 images). The recall@1, recall@5, and
recall@10 retrieval results are 13.33%, 26.67% and 33.33%,
respectively. Fig. 10 shows several retrieval examples. Our
SceneSketcher-v2 is able to find out rooms which are dec-
orated with similar furniture in similar positions. Fine-grained
scene-level SBIR techniques provide potential solutions to
indoor scene retrieval and style selection.
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Fig. 9. Comparison of Top-5 fine-grained scene-level SBIR results with SceneSketcher-v2 and SceneSketcher. We use two sets of similar image collections
of elephants (row 1 to row 5) and zebras (row 6 to row 10), respectively. The true matches are highlighted with red borders.

I. Failure Cases and Limitations

Although our SceneSketcher-v2 has achieved promising
results, it still has several limitations. Fig. 11 shows several
failure retrieval examples on our SketchyCOCO-SL Extended
dataset. Some failure cases come from the inaccurate or wrong
data annotations (see the first row of Fig. 11). Because our
model does not enforce object instance orientation constraints,
our retrieval model may find false fine-grained images with
different object orientations (see top-1 results in the second
and third rows of Fig. 11, which have the correct categories
and similar appearances, but wrong orientations). In addition,
when the input scene sketch contains complex occlusions, the
retrieval performance may drop a little (see the last two rows
of Fig. 11).

V. CONCLUSION AND FUTURE WORKS

In this work, we propose a new network called
SceneSketcher-v2 for fine-grained scene-level sketch-based
image retrieval. SceneSketcher-v2 incorporates an adaptive
graph-based framework, together with a global image atten-
tion, to model the layout and fine-grained details of sketch

scenes at the same time in an explicit way. Its end-to-end
training manner enables the updating of visual feature learning
network together with the graph convolutional network via a
triplet loss, which greatly boosts the final SBIR performance.
We show our method is superior to SceneSketcher as well as
other existing sketch-based image retrieval methods on several
popular datasets.

Although promising results have been obtained in this work,
our SBIR framework can be further improved in three aspects:
(1) The instances in the input scene sketches are treated
equally, however, in real SBIR applications, users may want
to give different retrieval priorities to the instances, e.g., draw
sketch objects in a variable levels of sketch abstraction and
detail to express their different attention to the instances’
similarities between input sketch and retrieved image. Our
method could be incorporated with users’ extra interactive
information to achieve image re-ranking or incremental image
retrieval. (2) Our method only uses the position, size, and
geometrical visual information in the scene sketch for image
retrieval. In some scenarios, extra user input from other
modalities, such as the color information, may allow the user
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Fig. 10. Fine-grained scene-level SBIR application: furnished room retrieval
with scene sketches. We show top-5 fine-grained scene-level SBIR results with
our SceneSketcher-v2. The true matches are highlighted with red borders.

Fig. 11. Failure cases on SketchyCOCO-SL Extended. We show Top-5 fine-
grained scene-level SBIR results with our method. The true matches are
highlighted with red borders.

to search the target image more efficiently. In the future,
we may also consider providing a flexible and hybrid query
interface which integrates sketch as well as other modality
input for fine-grained scene-level sketch-based image retrieval.
(3) Our SceneSketcher-v2 cannot be directly used for zero-
shot retrieval, and we plan to extend our model to obtain scene
graphs in a dynamic way, and conduct scene-level fine-grained
SBIR on unseen instances in the future work.
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