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Hand Pose Understanding with Large-Scale
Photo-Realistic Rendering Dataset
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Zhaopeng Cui, Ping Tan, Liang Chang, Hongan Wang

Abstract—Hand pose understanding is essential to applications
such as human computer interaction and augmented reality.
Recently, deep learning based methods achieve great progress
in this problem. However, the lack of high-quality and large-
scale dataset prevents the further improvement of hand pose
related tasks such as 2D/3D hand pose from color and depth from
color. In this paper, we develop a large-scale and high-quality
synthetic dataset, PBRHand. The dataset contains millions of
photo-realistic rendered hand images and various ground truths
including pose, semantic segmentation, and depth. Based on the
dataset, we firstly investigate the effect of rendering methods and
used databases on the performance of three hand pose related
tasks: 2D/3D hand pose from color, depth from color and 3D
hand pose from depth. This study provides insights that photo-
realistic rendering dataset is worthy of synthesizing and shows
that our new dataset can improve the performance of the state-
of-the-art on these tasks. This synthetic data also enables us to
explore multi-task learning, while it is expensive to have all the
ground truth available on real data. Evaluations show that our
approach can achieve state-of-the-art or competitive performance
on several public datasets.

Index Terms—Hand pose estimation, Photo-realistic synthetic
dataset, Physical-based rendering, Multi-task CNN.
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Fig. 1. The overview of our work. We build a large-scale photo-realistic
hand pose database with a variety of hand shapes and poses, and render
millions of synthetic images with different kinds of ground truths. Our dataset
with multiple annotations enable us to design a multi-task CNN structure that
predict depth and 3D hand pose from input RGB image in a cascaded way.

I. INTRODUCTION

As an important task in computer vision, recovering hand
pose is essential for many applications in the area of human-
computer interaction, augmented reality, and robotics [1]. One
type of the most popular approaches to address this problem
are deep learning based methods, which learn the hand pose
from large-scale dataset. One key bottleneck of deep learning
based hand pose methods is the lack of large-scale hand pose
dataset with diverse and accurate annotations. Existing datasets
for hand pose understanding are very limited in terms of
number of frames, number of subjects, level of annotations
and annotation accuracy. For example, BigHand2.2M [2] is
the largest public available hand pose dataset, which only
contains depth and 3D joint annotations. In order to collect
BigHand2.2M, the subjects have to wear a marker-based
tracker on the hand to get ground truth. As a result, the color
image could be contaminated and can not be applied to color-
based hand pose estimation task. RHD [3] contains diverse
annotations, but it only has about 44K images. Moreover, RHD
is not photo-realistic and has a great domain gap to real color
images. Collecting large-scale hand pose dataset is not trivial,
and it needs accurate 3D hand pose estimation as well as labor-
intensive efforts for semantic segmentation.
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To reduce the cost for building real datasets, synthetic data
has been widely employed in recent works [3], [4], [5], [6].
Compared to real data, synthetic data is easy to scale up
and provides high-quality ground truth. Another advantage
of synthetic data is the availability of diverse supervisions.
For example, besides the 3D hand pose ground truth, many
other kinds of supervision can be obtained from virtual hand
models, e.g. depth and semantic segmentation, which could
be potentially useful for pose estimation. One of the major
concerns about the synthetic data is the domain gap on the
input side, e.g. color, depth, between the rendered synthetic
data and real data. The other problem is how hand pose
understanding related tasks are affected by large-scale datasets.

To address these problems, we develop a large-scale syn-
thetic dataset (about 5.52M images), namely PBRHand. Im-
ages are rendered from textured hand meshes under a variety
of hand poses. To ensure the reality, we capture high-fidelity
3D hand models and pose sequence with professional 3D
scanners and digital glove. We randomly sample a variety of
camera viewpoints and environment map illuminations, and
employ physically based rendering (PBR) to generate photo-
realistic images. As for the ground truth, we generate accurate
3D skeleton hand pose, pixel-wise semantic segmentation (e.g.
finger, palm) and depth maps.

We use our data to pretrain convolutional neural network
for three hand pose understanding related tasks, 2D/3D hand
pose from color, depth estimation from color image, and 3D
hand pose from depth. The experiments demonstrate that for
these hand pose related tasks our data can improve the network
performance of the current state-of-the-art. We also show that
for 3D pose from single color image the dataset enables us to
pretrain our model with multiple supervisions and delivers bet-
ter performance after finetuning on real datasets (see Fig. 1).
Specifically, we present a cascaded multi-task deep neural
network based on PBRHand for hand pose estimation from
color image, which can effectively learn from an auxiliary
depth recovery task.

Compared to Weakly-sup [7] that also leverages depth map
for auxiliary supervision during the hand pose estimation,
our cascaded multi-task method adopts a different way to
use depth map. Inspired by the success of hand pose from
depth, we consider depth map/feature can be used as important
input for hand pose, and we conduct an in-depth analysis
on the effect of different cascaded forms (feature cascade,
input/output cascade), and find that the depth feature can
improve the 3D hand pose estimation from color (See Section
VI.B). Weakly-sup [7] presents a weakly-supervised network
for 3D hand pose estimation. They predict 3D hand pose from
the input color image, and then generate depth map from
the predicted 3D hand pose. The generated depth map serves
as weak supervision for 3D pose regression. Moreover, as
shown in Table II of our supplementary document, our method
achieves better performance than [7].

The major contributions of this work are as follows:

1) We develop a high-quality synthetic hand pose dataset,
namely PBRHand. It contains a large number of photo-
realistic synthetic color images with various ground

truths (depth maps, semantic segmentation labels and
hand joints);

2) We demonstrate that the networks pretrained on our
PBRHand achieve state-of-the-art performances on three
hand pose related tasks. We also shows that the rendering
quality is important for hand pose estimation;

3) Our PBRHand also enables us to explore multi-task
learning. We present a cascaded multi-task deep neural
network based on PBRHand for hand pose estimation
from color image. Our network can effectively learn
from an auxiliary depth recovery task for 3D hand pose
estimation. The network achieves the state-of-the-art or
competitive performance on public datasets.

The rest of the paper is organized as follows. In Section II,
we introduce related works. In Section III, we introduce
the pipeline of generating synthetic hand pose dataset. In
Section IV , we investigate the effect of our dataset on three
typical hand pose related task. In Section V, we present
our multi-task model for hand pose estimation in detail. In
Section VI, we show comparison experiments and ablation
study. Conclusions are given in Section VII.

II. RELATED WORK

Building large-scale dataset is a key issue for hand pose
estimation using convolutional neural networks.

One direction is to construct real hand pose datasets, in
which the images are captured with a real color or depth
camera, and the joints are annotated manually, by model
fitting methods [16], or jointly using both methods [17].
Constructing large-scale dataset with manual annotation is
almost prohibited, due to the fact that it usually requires
excessive human efforts, results in inaccurate annotations,
and it is also time-consuming for scaling up. ICVL, NYU
and MSRA dataset are three main depth image benchmark
datasets for hand pose performance evaluations. ICVL dataset
[17] adopts human pose tracking and manual refinement for
annotation. However, the total numbers of frames and subjects
are small, and its issue of annotation accuracy is found in [18].
MSRA dataset [19] uses the same strategy for annotation.
Its scale is larger, but the annotation accuracy is still not
high. NYU dataset [16] is a larger benchmark with a large
view coverage, large variation in articulation. It relies on first
model-based fitting, and then particle swarm optimization to
get the joint annotation. Manually adjusting annotation and re-
initialization are required. Oberweger et al.[18] also propose
a semi-automated method for labeling a hand depth video
with the 3D joints. The dataset currently contains only 4
subjects and about 63K RGBD frames. Recently, Yuan et
al. propose BigHand2.2M [2]. BigHand2.2M is currently the
largest real dataset for depth, and the hand joints are annotated
with magnetic markers. The dataset is of less diversity with
respect to hand shape with only 10 subjects. Moreover, it
is not suitable for color-based hand pose estimation tasks.
Datasets such as Stereo [20], Dexter+Object [10], Dexter Ego
[4], MPII+NZSL [21] for color based hand pose estimation
are usually either relatively small or contain only partial
annotations. Recently, FreiHands [9] is created as a large-
scale real dataset of color images with hand pose/shape labels;
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TABLE I
DATASET COMPARISON. ’PARTSEG’ IS ABBREVIATION FOR HAND PART SEGMENTATION. ’FINGERTIPS’ MEANS 5 FINGERTIPS ARE LABELED, AND IT CAN

BE EXTRACTED FROM ’JOINTS’. OUR DATASET HAS BETTER DATA VARIATIONS, QUALITY OF RENDERED IMAGES AND FULL ANNOTATIONS.

Dataset Content Type Frames Subjects Viewpoints
Stereo [8] RGB, depth, joints real 18K 6 3rd

FreiHands [9] RGB, joints real 170K - 3rd
Dexter+Object [10] RGB, depth, fingertips real 3,014 2 3rd

Dexter Ego [4] RGB, depth, fingertips real 3,190 4 ego
FingerPaint [11] depth, fingertips synthetic 100k 1 full

HandNet [12] depth, 6 joints real 212k 10 3rd
MHP [13] depth, joints real 80k 9 3rd

Bighand2.2M [2] depth, joints real 2.2M 10 full
RHD [3] RGB, depth, joints, partseg Blender [14] 44K 20 full

Our PBRHand RGB, depth, joints, partseg Mitsuba [15] 5.52M 50 full

However, the background is synthetic, and the annotation is
semi-automatic and requires human-in-the-loop verification.

The other direction is to build synthetic dataset, which
has shown promising effect for convolutional neural network
training of many computer vision tasks, indoor scene under-
standing [5], intrinsic image [6], optical flow [22][23], object
pose estimation [24], and human pose estimation [25]. These
methods employ synthetic dataset with ground-truth annota-
tions for network pretraining, and then finetune on real dataset.
Synthetic data for human hand is especially challenging due
to the fact that it is generally hard to capture high-quality
hand shapes and hand motions from real subjects as well as
generate photo-realistic images to narrow the gap between the
real images and synthetic images. Zimmermann and Brox [3]
used a rendered hand dataset named RHD with various ground
truth for pose estimation. The dataset is almost limited with the
number of frames (44K) and the number of human subjects
(20). In contrast, we provide 125 times of images in RHD,
and our rendered color images are more photo-realistic than
the color images in RHD. SynthHands [4] contains depth and
color images from an egocentric viewpoint, and the images are
rendered using Unity. The dataset is the first synthetic dataset
with hand interaction with objects. GANeratedDataset [26]
translates synthetic images in SynthHands to real images us-
ing geometrically consistent CycleGAN. The dataset contains
more than 330K color images of hands with 2D and 3D hand
pose annotation. The MSRC FingerPaint hand pose dataset
[11] contains 100K synthetic depth frames for one subject,
and its hand poses are limited by random sampling from six
articulations [2].

Our dataset proposed in this paper differs from previous
datasets. It is the first large-scale hand dataset with photo-
realistic RGB, depth, semantic segmentation, and 3D hand
joints. The whole data generation pipeline is of little cost and
can be scaled up easily. We show that our data with shape,
pose, texture and illumination variations can benefit hand pose
understanding problems.

III. PBRHAND HAND POSE DATASET

We build a large-scale hand pose dataset, named PBR-
Hand (physically based rendered hand). It contains millions
of photo-realistic color images and various kinds of accurate

ground truths which could be potentially helpful for hand
pose related tasks. Recently, deep learning methods have been
successfully applied to hand pose estimation problem, and
several good datasets are publicly available (Table I). Those
datasets made great contributions to improve the quality of this
task. However, there are still some limitations. First, for real
data, it is extremely expensive to capture and label large-scale
datasets for training complex deep neural networks. Current
real datasets [20], [4] are only built with thousands of frames
and quite few subjects, which limits the generalization of
deep neural networks. Recently, Zimmermann and Brox [3]
build a synthetic dataset named rendered Hand Pose Dataset
(RHD), which contains more frames, poses and subjects. The
data variation of this synthetic dataset is generally better than
existing real datasets. However, since they use low-quality 3D
human models and unrealistic rendering method, there exists
a large gap between the dataset and real-world images.

To bring further improvement to hand pose understanding,
we choose to build a new dataset. To make the data realistic
and diverse, we first use professional devices to capture hand
models and poses from human subjects. We manually clean
and label those scanned 3D hand models. After that, we apply
photo-realistic rendering to generate millions of images with
multiple ground truths. Overall, our PBRHand contains 5.52
million synthetic color images with 3D hand pose, semantic
segmentation and depth. Fig. 2 shows several examples of our
photo-realistic hand dataset. Table I shows the comparison of
our dataset and other datasets.

A. 3D Hand Model and Pose
To collect high-fidelity mesh models, we use a hand-held

3D scanner Artec ® Eva scanner [27] to capture dense 3D
point cloud of hands in standard upright pose (Fig. 3 (a)). For
the diversity of hand shapes between human, we collect hand
shapes from 50 people, including 30 males and 20 females of
different ages, careers and races. We scan a human hand at
rest pose by moving Eva scanner around toward the hand,
soften point cloud and remove noise of each frame using
’Smooth Brush’ and ’Eraser’ tools in Eva capture software,
then fuse multiple scans into a completed mesh using the
’Fusion’ tool. Though Artec Eva scanner can provide color
texture for a captured mesh, we found the texture was blurry
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Fig. 2. Our photo-realistic hand dataset by posing real hand models with real hand motion data. Examples of rendered photo-realistic hand color images are
shown on the top rows. Examples of hand poses, rendered depths and semantic segmentation are shown on the bottom rows.

(a) (b) (c)
Fig. 3. Hand model generation. We show captured hand point cloud with
3D scanner in (a), rewired mesh in (b), and mesh deformation under several
poses in (c). We use real hand mesh models instead of hand meshes designed
by artists, which are broadly used in previous hand pose estimation literature.

Fig. 4. Textured hand shape. left: original texture; right: improved by designer.

in some areas and there were also some artifacts. Therefore,
we employ professional designers to manually refine the hand
textures for high reality and rich details (Fig. 4). In order to
simplify the rigging and texture mapping process, we rewire
the surface line to fit natural hand topology of a standard
hand mesh template using nonrigid ICP [28] (Fig. 3 (b)).
In our current hand model, we do not add arm part. Adding
arm while still maintaining the reality is a challenging task.
Capturing 3D models for arm and dealing with skin, pose, and
potential interaction with clothes requires huge effort. This is

a great direction for future work. The point clouds are then
fitted to triangulated textured mesh using UV mapping [29].
The texture maps of our hand models are manually created by
professional engineers according real hand texture images.

Fig. 5. Hand shapes and poses. With hand models of 50 subjects and 1, 840
gestures, we synthesize 92K hand meshes with various hand shapes and poses.

To capture realistic hand poses, we summarize 1, 840 key
hand poses for human-computer interactions inspired by ex-
isting datasets such as NYU [16], Dexter+Object [10] and
EgoDexter [4]. We ask subjects to show these poses wearing a
Measurand® ShapeHand glove, which captures skeleton poses.
The key pose set covers typical hand gestures such as grasping,
pinch, abduction-abduction of all fingers together, flexion-
extension of all fingers etc. The subjects are also asked to move
hand freely to further increase the pose diversity. The captured
hand poses usually contain noises, so we employ professional
designers to refine local joint position and orientation. It makes
hand poses right and reduces artifacts.

The collected hand poses are refined and semi-automatically
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Fig. 6. HDR environment maps used for rendering our photo-realistic hand
images. They consist of 10 indoor scenes and 10 outdoor scenes under
different lighting conditions.

re-targeted onto the collected hand mesh models using rig-
ging and deformation [30], so that the hand meshes can be
transformed automatically into the collected pose set. Fig. 3
and Fig. 5 shows some examples of hand mesh deformation
under several poses. The captured hand poses usually contain
noises, so we employ professional designers to refine local
joint position and orientation. It can reduce hand mesh artifacts
such as mesh penetrations during the model re-targeting. We
first manually align the standard hand pose to hand meshes
(only one mesh per subject) by adjusting joint local offsets.
And then we bind the skeleton and mesh in Autodesk ® Maya,
and we can generate meshes automatically under different
poses by deformation. However, the deformation may have
distortions to the smooth binded skin, we employ professional
artists to manually check the data, adjust the skin weights and
control the deformation, and make sure that the rigged hand
meshes are of high quality.

Moreover, with the current data collection framework, we
are able to capture high quality pose and shape and create
photo-realistic texture within a reasonable amount of time.
Firstly, we collect a hand pose set of 1,840 poses using a
Measurand® ShapeHand glove within less than two hours.
Secondly, we collect hand shapes, create hand textures, and
retarget the hand poses for 50 subjects. The manual work
for each subject costs about 85 minutes. Table II shows the
detailed time of manual work for each subject.

TABLE II
MANUAL WORK (IN MINUTE) OF HAND SHAPE CAPTURE AND TEXTURE

CREATION FOR EACH SUBJECT.

Capture hand shape
and post-process Create hand texture Rig and deform hand

shape with pose
Time 10 60 15

B. Physically Based Rendering

With high-fidelity hand meshes and realistic pose, we em-
ploy a widely used physically-based renderer Mitsuba [15] to
generate photo-realistic images. We pick camera viewpoints
with random distances in [400, 800] mm away from the center

of the mass of the hand model, and sample 3 camera positions
with the zenith angle in [ 16π,

2
3π] and the azimuth angle in

[0, 2π). To simulate realistic illumination effect, we collect 20
HDR environment maps, where indoor and outdoor scenes
with various illumination conditions are included. Fig. 6
shows these environment maps. The perspective camera has a
resolution of 640×480, horizontal field of view of 54 degrees.
Given a camera position, our hand models are rendered under
a random subset of the environment maps using path tracing.
With the hand meshes, textures, environment maps and random
sampled viewpoints, we obtain more than 5.52 millions hand
images by photo-realistic rendering. Fig. 2 illustrates the
synthetic image, depth, segmentation and joints of our dataset.

In order to compare whether photo-realistic rendering is
helpful for hand pose understanding tasks, we also render from
unrealistic rendering with directional lights using OpenGL.
Our dataset rendered with OpenGL is named PBRHand-
OpenGL. Basic shading effects, multiple directional lights are
included, but no global illumination, or shadow is included.
Fig. 7 shows examples with OpenGL and physically-based
rendering. We only show the hand regions to better illustrate
the effect of different rendering methods on hand regions.

(a) PBRHand-OpenGL

(b) PBRHand
Fig. 7. Hand image rendered with different methods. (a) OpenGL. (b)
Physically-based rendering.

C. Annotation

For each sample in our PBRHand dataset, we provide
rendering color images with semantic segmentation, depth
image and 3D joint coordinates. When modeling hand shape,
designers manually label 15 hand parts’ segmentation on the
hand meshes of a standard pose, the segmentation is stored as
a texture map, and the segmentation of hand mesh undergoing
different poses can be automatically labeled during the hand
pose retargeting process. The semantic segmentation is also
generated by rendering the albedo of the hand mesh with
semantic label encoded texture map. The depth is extracted
from z-value of 3D position in camera space. The depth is
rendered using “distance field” integrator followed by a post-
processing that converts the ray distance to camera center
into depth with camera intrinsic matrix. When modeling hand
poses, hand meshes are deformed according to the pose of its
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corresponding skeleton. We calculate the joint locations in the
camera space with the transformation and forward kinematics.

D. Hand Pose/Shape Space

Following Bighand2.2M [2], we visualize the hand
pose/shape space, and compare our PBRHand dataset with the
existing datasets using 2D t-SNE. Fig. 8 shows the projected
hand pose space and hand shape space of our PBRHand
dataset, RHD [3] and BigHand2.2M [2]. We observe that our
dataset has better coverage in hand shape space, and the hand
pose distribution of our dataset and Bighand2.2M is better than
RHD. It is consistent with the intuition that the pose space is
simpler than the shape space, where the hand shape can be
more difficult to be captured and the hand shape is different
between subjects.

PBRHand
Bighand2.2M
RHD

PBRHand
Bighand2.2M
RHD

(a) Hand pose space (b) Hand shape space
Fig. 8. 2D t-SNE of hand pose and hand shape space for PBRHand,
BigHand2.2 and RHD dataset.

IV. HAND POSE UNDERSTANDING RELATED TASKS

In this section, we first investigate three fundamental hand
pose related tasks: (1) 2D/3D hand pose estimation from color
image; (2) depth estimation from color image; (3) 3D pose
from depth image. For these tasks, we show how the state-of-
the-art model pretrained with our synthetic dataset compares
with the model pretrained with other synthetic dataset.

A. Dataset and Evaluation Metrics

In this paper, we evaluate hand pose estimation perfor-
mance for different hand pose understanding tasks on sev-
eral public datasets: Stereo dataset [8], MPII-NZSL dataset
[21], NYU dataset [16], Dexter+Object dataset [10], Rendered
Hand Pose dataset (RHD) [3], and Task3 of Hands 2019
Challenge (Hands-2019) [31]. In this section, we use Stereo
dataset, MPII-NZSL dataset and NYU dataset for evaluation.
In Section V, we use Stereo, RHD, Dexter+Object and Hands
2019 datasets for evaluation. We briefly review them in the
following and present the evaluation metrics.

a) Stereo Hand Pose dataset (Stereo) [8]: is the largest
public real image dataset with fully annotated 3D hand joints
using color images. We use the color-depth subset of Stereo
SK captured from a RGBD camera. It provides color and depth
images, 3D annotations for 21 hand keypoints. The dataset is
separated into an evaluation set of 3, 000 images and a training
set of 15, 000 images.

b) MPII+NZSL dataset [21]: contains 2800 images with
2D hand pose annotations. There are about 2000 and 800
images for training and testing.

c) NYU hand dataset [16]: is a depth image based hand
pose dataset. We use NYU dataset to compare the effect of
our scanned hand shape and the parameteric MANO model
on 3D hand pose estimation from depth. However, we do not
evaluate on the color images of NYU dataset, because these
images are registered with depth and thus corrupted [3].

d) Rendered Hand Pose dataset (RHD) [3]: is a synthetic
dataset, which consists of 41,258 images for training and 2,728
images for evaluation. The images are rendered using Blender.
The dataset provides 2D and 3D joint annotations, depth map,
and part segmentation.

e) Dexter+Object dataset [10]: consists of 6 sequences
with 2 actors, and varying interactions with a simple object
shape. Fingertip positions and cuboid corners were manu-
ally annotated for all sequences. Hand pose estimation on
Dexter+Object Dataset is very challenging, since no training
dataset is available and there are heavy occlusions due to the
interaction between hand and object.

f) Task3 of Hands 2019 Challenge dataset (Hands-2019)
[31]: contains images from 3 subjects manipulating 4 objects
for training, and contains images from 5 different subjects ma-
nipulating 6 different objects for testing. Hands-2019 dataset
is also challenging due to the heavy occlusion of objects.
Evaluation Metrics We conduct three hand pose understand-
ing related tasks, and for each task we adopt the standard
evaluation metrics in literature. To evaluate 2D and 3D hand
pose accuracy from color image, we follow common met-
rics [3] and use average End-Point-Error (EPE), Area Under
the Curve (AUC) and percentage of correct keypoints (PCK)
over different thresholds.

For 3D hand pose from color image, we follow [3] to es-
timate normalized 3D joint coordinates relative to a reference
point, which can be selected as a hand root joint or the 3D
center-of-mass (CoM) of hand foreground region estimated
from the aligned depth of the color image. In the evaluation
of Stereo, RHD and Dexter+Object, we use 3D CoM as the
reference point. In the evaluation of Hands-2019, we use the
provided ground-truth wrist locations for the test images as
the reference point. During the evaluation, the absolute joint
positions are obtained by adding the predicted normalized
3D joints with the reference point. For MPII+NZSL dataset,
we follow [21][32] to use handsize-normalized PCK for
evaluation. For depth estimation from color, we use mean
absolute error (MAE) to evaluate the difference between the
ground truth and estimated depths on the hand foreground. To
evaluate 3D hand pose from depth, we use the standard metrics
proposed in [17], the mean joint errors and the percentage of
test images that have all predicted joint errors within a given
distance threshold from the ground truth.

B. 2D/3D Pose from Color image

Method. We use the network architecture in CHP3D [3] for
2D/3D hand pose estimation from a single color image. The
network consists of three blocks, HandSegNet, PoseNet and
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(a) 2D hand pose results with PoseNet. (b) 3D hand pose results with PoseNet + PosePrior.
Fig. 9. (a) 2D hand pose results with PoseNet. (b) 3D hand pose results with PoseNet + PosePrior. PoseNet and PoseNet + PosePrior are both pretrained on
different datasets and finetuned on Stereo dataset.

PosePrior network. HandSegNet is a segmentation network
to segment hand mask. With the hand mask predicted by
HandSegNet, the input image is cropped and normalized
in size, and fed to PoseNet to get the score maps of 2D
hand joints. The PoseNet adopts a cascaded encoder-decoder
network similar to [33] to predict score map of the input
image. PosePrior recovers 3D hand joints using the score map
of 2D hand joint as input.

Training. Similar to CHP3D [3], we first initialize the first
16 layers of PoseNet network with pretrained weights of [33]
and all the other layers with random weights, and train the
PoseNet on the Stereo dataset [8] and the synthetic dataset.
Following [3], we use the score map predicted by PoseNet to
train PosePrior. We keep PoseNet fixed and train on Stereo
hand pose dataset (Stereo) [8]. To highlight the difference be-
tween physical-based rendering and unrealistic OpenGL ren-
dering techniques, we train on PBRHand + Stereo, PBRHand-
OpenGL + Stereo and RHD [3] +Stereo. The networks are
trained with a batch size of 16 and using ADAM solver. The
learning rate is 0.0001 for the first 10K iteration, 0.00001 for
the following 10K iterations and 0.000001 until the end.

Experiment. We train with the code released by [3] and test
on the Stereo dataset [8]. Firstly, we compare the performance
of 2D keypoint estimation using PoseNet trained on our
PBRHand dataset, PBRHand-OpenGL dataset and the RHD
dataset. Secondly, we compare the performance of 3D joints
using PoseNet + PosePrior. Fig. 9(a) and Table III show the
performance of 2D pose estimation on the Stereo dataset with
different training settings. Fig. 9(b) and Table IV show the
performance of 3D pose from color image on Stereo dataset
with different training settings. We observe that the EPE and
AUC (20-50mm) with the 3D pose model pretrained on our
PBRHand dataset are better than the model without pretrain,
the models pretrained on RHD dataset [3] and PBRHand-
OpenGL dataset. Moreover, the 2D hand pose with the model
pretrained on PBRHand is also better than the model pre-

TABLE III
PERFORMANCE OF 2D HAND POSE FROM COLOR IMAGE ON STEREO

DATASET WITH DIFFERENT TRAINING DATASETS. ’-’ IN THE FIRST
COLUMN MEANS NO PRETRAINING. AUC IS SHOWN IN PERCENTAGE

POINTS.

Pre-train PoseNet
Dataset AUC(0-30pix.)↑ EPE (pix.) ↓

- 76.1 8.732
RHD 79.9 7.500

PBRHand 80.8 6.467
PBRHand-OpenGL 76.9 8.203

TABLE IV
PERFORMANCE OF 3D POSE REGRESSION FROM COLOR IMAGE ON

STEREO DATASET WITH DIFFERENT TRAINING DATASETS. ’-’ IN THE FIRST
COLUMN MEANS NO PRETRAINING. AUC IS SHOWN IN PERCENTAGE

POINTS.

Pre-train PoseNet + PosePrior
Dataset AUC(20-50mm) ↑ EPE (mm) ↓

- 97.9 9.142
RHD 98.7 8.626

PBRHand 99.3 7.716
PBRHand-OpenGL 97.8 9.502

trained on RHD and PBRHand-OpenGL. Fig. 10 shows 2D
hand pose results on Stereo dataset with different training
datasets. We can see that the 2D hand pose with the model
pretrained on PBRHand provides reasonable hand skeleton
joints and aligns better with the hand foreground than those
with the models pretrained on RHD and PBRHand-OpenGL.

We also test the effect of our PBRHand dataset on
MPII+NZSL hand pose dataset [21]. MPII+NZSL only con-
tains 2D hand pose annotations, and we evaluate the effect of
different synthetic datasets on 2D hand pose using PoseNet.
Fig. 11 and Table V show the performance of 2D pose esti-
mation on the MPII+NZSL dataset with the PoseNet models
trained on different datasets. We observe that the 2D hand
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(a) Input image (b) Hand pose with 
model pretrained 
on RHD

(c) Hand pose with 
model  pretrained
on PBRHand‐OpenGL

(d) Hand pose with 
model  pretrained
on PBRHand

Fig. 10. Hand pose results on Stereo dataset with different training datasets.
The pretrained model on PBRHand provides more reasonable hand skeleton
joint structure.
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Fig. 11. 2D hand pose results with PoseNet pretrained on different datasets
and finetuned on MPII+NZSL dataset.

pose with the model trained on PBRHand is better than those
with the model without pretraining, the models pretrained on
RHD dataset and PBRHand-OpenGL dataset.

Therefore, our PBRHand dataset synthesized by physically-
based rendering improves the performance of color-based hand
pose estimation upon the state-of-the-art method.

C. Depth Estimation from Color Image

Method. We utilize a stacked hourglass network to regress
depth estimation from color image similar to human depth
estimation task in [34]. The network formulates the depth
estimation from a color image as a pixel-wise regression

TABLE V
PERFORMANCE OF 2D HAND POSE FROM COLOR IMAGE ON MPII+NZSL

DATASET USING POSENET TRAINED UNDER DIFFERENT TRAINING
DATASETS. ’-’ IN THE FIRST COLUMN MEANS NO PRETRAINING. AUC IS

SHOWN IN PERCENTAGE POINTS.

Pre-train PoseNet
Dataset AUC(0-0.5 hand size)↑ EPE (pix.) ↓

- 65.5 12.197
RHD 76.1 12.197

PBRHand 76.7 11.803
PBRHand-OpenGL 75.2 12.708

problem. Following the image preprocessing in [34], we first
normalize the depth values of hand foreground pixels to
[−1, 1]. We find the 3D center of the mass (CoM) of the hand
region using the depth map, then the depth map is normalized
by subtracting CoM and divided by a constant 100. The
network adopts convolutional layers with residual connections
and 3 stacked ‘hourglass’ modules, and each followed module
takes the prediction of the previous module as input.
Training. The training process consists of two stages, pretrain-
ing and finetuning. We pretrain the model on the synthetic
datasets (PBRHand and RHD), then finetune the pretrained
model on the Stereo pose dataset [8] similar to Zhang et al.[5].
We use RMSProp optimizer to train and finetune the model. At
the pretraing stage, the initial learning rate is set to 5× 10−4,
and it will be smoothly decayed to 0.9 scale every 80k steps.
We train 140k steps at pretraining stage and finetuning stage.
We adopt data augmentation such as rotation, adding noises
and brightness adjustment. The batch size is set to 16.
Experiment. In order to verify the effect of PBRHand on
depth estimation, we compare the depth recovery performance
on the Stereo dataset [8] using models trained on our PBR-
Hand dataset, RHD and Stereo datasets. Table VI shows the
comparison of depth estimation on the Stereo dataset. We can
see that the model trained on PBRHand+Stereo achieves the
best performance. Fig. 12 shows several qualitative results. We
can see that the model pretrained with our PBRHand dataset
recovers more accurate depth images.

TABLE VI
PERFORMANCE OF DEPTH ESTIMATION FROM COLOR IMAGE (IN MM) ON

STEREO DATASET WITH DIFFERENT TRAINING DATASETS.

Training Data Stereo RHD+Stereo PBRHand+Stereo
MAE ↓ 5.877 4.571 4.541

D. 3D Hand Pose from Depth Image

In this experiment, we aim to compare the effect of synthetic
training datasets with our scanned hand models in PBRHand
and a parametric hand model MANO [35] on 3D hand pose
estimation. Since the original MANO model does not contain
photo-realistic textures to support color based hand pose
related tasks, we conduct the comparison using 3D hand pose
estimation from depth. During the comparison, we generate
two synthetic training datasets PBRHand-Sub and MANO,
which both consist of 10 hand models and 1840 hand pose.
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MAE

Depth

Color

MAE

Depth

Color

Fig. 12. Depth estimation from color image on Stereo dataset. (a)(b)(c) show
the predicted depth and error map of predicted depth using models pretrained
on our PBRHand dataset, pretrained on RHD, and without pretraining,
respectively. The model pretrained with our PBRHand dataset recovers more
accurate depth images.

The PBRHand-Sub dataset, a subset of our full PBRHand
dataset, adopts scanned hand shape models, and the hand shape
models in the MANO dataset is generated via the MANO hand
model [35].

Method. We use the network architecture in DenseReg [36]
for 3D hand pose estimation from a single depth. We choose
DenseReg [36] as the baseline model, because DenseReg is
one of the state-of-the-art networks with the released code.
The network adopts both the 2D and 3D properties of a depth
to recover 3D hand pose via pixel-wise regression.

Training. We conduct our comparison experiments on NYU
dataset [16]. To highlight the difference between scanned
hand models and MANO hand models for 3D hand pose
estimation, we train DenseReg [36] from scratch on NYU
dataset, PBRHand-Sub + NYU dataset, and MANO + NYU
dataset. The network are trained with a batch size of 40 and
using ADAM solver. The initial learning rate is 0.001, and the
exponential decay rate of the momentum is set to β1 = 0.5.
We donot use data augmentation during the training process.

Experiment. We train with the code released by [36] and test
on the NYU hand dataset. We get three DenseReg models
trained on NYU dataset, PBRHand-Sub + NYU dataset, and
MANO + NYU dataset, and compare their 3D hand pose
estimation performance. Fig. 13 and Table VII compare the
3D hand pose results on NYU dataset with different train-
ing datasets. The model trained with PBRHand-Sub + NYU
dataset achieves better performance than the model trained
with MANO + NYU dataset and the model trained on NYU
dataset, which indicates that our hand model is more realistic
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NYU(12.06mm, AUC=0.645)
PBRHand-Sub+NYU(11.75mm, AUC=0.665)
MANO+NYU(12.55mm, AUC=0.634)

Fig. 13. 3D hand pose results with DenseReg trained on NYU dataset,
PBRHand-Sub + NYU dataset, and MANO + NYU dataset.

TABLE VII
PERFORMANCE OF 3D HAND POSE FROM DEPTH IMAGE ON NYU

DATASET WITH DIFFERENT TRAINING DATASETS. AUC IS SHOWN IN
PERCENTAGE POINTS.

Dataset NYU MANO + NYU PBRHand-Sub + NYU
Mean error (mm) ↓ 12.06 12.55 11.75

AUC(0-80mm) ↑ 64.5 63.4 66.5

than MANO and the rendered data is more beneficial to the
pre-training.

V. MULTI-TASK HAND POSE ESTIMATION FROM COLOR

With the help of our dataset, we further propose a multi-task
deep neural network for hand pose estimation, which jointly
predicts depth and hand joints in a cascaded fashion. We show
how our multi-task model and our synthetic dataset compare
with the state-of-the-art models pretrained with other synthetic
datasets. Fig. 14 illustrates the basic structure of our network.
In the first stage, the network predicts a depth map from input
hand image. And in the second stage, the network uses latent
features from first stage to predict 3D hand joints. We select
depth as an auxiliary task based on the fact that depth is closely
related to 3D hand pose estimation [2].

A. Data Preparation

We denote the training samples as {(Ii, Di, Ji)}Ni=1, where
Ii is the i-th detected hand region, Di and Ji are the corre-
sponding hand depth map and 3D hand joint locations in the
camera’s coordinate system. Following commonly used data
normalization methods [3], the input color image is normalized
to [−1, 1]. Considering the sizes of human hands, we choose
a constant value α = 100 mm to normalize depth and 3D
hand joints. The depth image is first subtracted by the average
depth of the hand region and then normalized with α. For 3D
hand joints, we first find the 3D center of the mass (CoM) of
the hand region using the depth map. Each hand joint is then
normalized by subtracting CoM and divided by α. This CoM
is only used to crop the hand but not directly used as input
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U-NetConcatenate Dense Layers

Depth Joint

Convolutional layers

Color Image

Fig. 14. Our cascaded multi-task network for hand pose estimation from a single color image. The network uses cropped and resized hand regions as input.
Our network has two stages, the first stage for depth recovery, and the second stage for hand pose recovery, which iteratively generates depth and hand pose.

of the network in anyway. The network output is a 3D pose
relative to a CoM, and the CoM is only required to compare
with the ground truth. Hereafter, we denote Di and Ji to be
the normalized depth map and joints, respectively.

B. Cascaded Multi-task Network

Our network takes a color image with the resolution of
128 × 128 × 3 as input. We first use several convolutional
blocks to extract image features. After that, in the depth
prediction stage, we use an U-net [37] to generate latent depth
features. U-net is well known for its capability to extract
both low-level and high-level features and widely used in
segmentation, detection and pixel-wise regression. Then the
depth features are passed to several convolutional blocks to
generate depth map. In the joint prediction stage, the network
first concatenates image features and depth features. And then,
another U-net is employed to fuse the input features. Finally,
after several convolutional blocks, downsampling and fully
connected layers, the network outputs normalized 3D hand
joint positions. Our network predicts depth and joints in a
cascaded fashion, where joints depends on not only input
image features but latent depth features as well. More details
about the network can be found in the appendix.

C. Loss Functions

In the training phase, the total loss function for the proposed
cascaded network is defined as:

Ltotal(Ĵ , D̂) = Lpose(Ĵ , J
∗) + λdLdepth(D̂,D

∗) (1)

where the loss Ltotal is a combination of hand pose loss Lpose

and depth recovery loss Ldepth. The parameter λd is the weight
of Lpose and Ldepth, and set to 1.0.

a) Loss function for hand pose: We use Euclidean dis-
tance to evaluate the difference between the ground truth and
estimated 3D hand joints.

Lpose(Ĵ , J
∗) =

1

n

n∑
i=1

||̂ji − j∗i || (2)

where Ĵ = {ĵi} and J∗ = {j∗i } are the predicted joint
positions and ground truth joints, respectively, n is the total
number of joints, which is typically 21 in most datasets.

b) Loss function for depth recovery: Similar to the image
regression work [38], we use L1 norm to evaluate the loss
between the ground truth and estimated depth maps on the
hand foreground region.

Ldepth(D̂,D
∗) =

1

m

m∑
i=1

|M � (d̂i − d∗
i )| (3)

where D̂ = {d̂i} and D∗ = {d∗
i } are the predicted and

ground truth depth maps, respectively. M is the hand fore-
ground binary mask, m is the number of valid pixels in the
hand foreground binary mask, and � represents element-wise
multiplication.

D. Implementation Details

Our method focuses on hand pose estimation, where hand
regions are detected and cropped following the way in [39],
and the cropped color images and depth maps are resized
to 128 × 128 pixels. During the training stage, we perform
data augmentation on the training datasets using 2D rotation,
scaling for the hand region, depth image and and ground
truth hand joints. We use in-plane rotation around z-axis of
the camera’s coordinate system. The in-plane rotation angle
is randomly sampled from the interval [-5, 5] degrees. We
keep the aspect and scale hand color images with factors
randomly chosen from [0.84, 1.16]. Our implementation is
based on Tensorflow [40]. We use RMSProp optimizer with
0.001 learning rate, 0.9 weight decay. We use 16 batch size
and train on our PBRHand dataset for 10 epochs and finetune
on the training set of each evaluating dataset for 20 epochs.

VI. EXPERIMENT

In this section, we first compare our multi-task hand pose
estimation model with state-of-the-art, then conduct ablation
study on our method.

A. Comparison with State-of-the-art methods

We first evaluate our cascaded multi-task network and
compare with state-of-the-art methods on the Stereo dataset
(Fig. 15 and Table VIII). Our network is pretrained on our
PBRHand dataset, and then finetuned on the Stereo training
set. Weakly-sup [7], Latent2.5D [32], Spurr [41], Mueller
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Fig. 15. Comparison of different methods on Stereo dataset. Our method
outperforms all other methods and achieves the highest AUC.

et al.[4] and CHP3D [3] are the state-of-the-art color-based
hand pose methods using the same experiment setting (i.e. the
same training and testing datasets) as our method. For Stereo
dataset, the area under the curve (AUC) of our network are
higher than the results of the compared methods, Weakly-sup
[7], Latent2.5D [32], CHP3D [3], Spurr [41], and Mueller
[4]. More evaluations can be found in the supplementary
document.

We then use the synthetic RHD dataset to further verify
the effectiveness of both the synthetic data and our model.
Table VIII shows the comparison results. To compare on the
dataset, we pretrain our cascaded model with RHD and our
PBRHand, respectively. We use both testing set from RHD and
Stereo for evaluation. We first train models on RHD or our
dataset, and then finetune for the Stereo dataset. For Stereo
dataset, the model pretrained on our PBRHand (6.39mm)
achieves better performance than the model pretrained on RHD
(7.03mm), which shows our synthetic dataset contributes more
to the pretraining. To compare about the models, we pretrain
CHP3D [3] and our model using RHD, finetune and test on
Stereo datasets. Again, our model (7.03mm) achieves an error
5.17mm lower than [3] (12.2mm), and also performs better
than Weakly-sup [7] and Spurr [41]. We also evaluate the
performance on RHD testing set with CHP3D + RHD, Ours
+ RHD, Ours + PBRHand. As shown in Table VIII, the 3D
EPE with Ours + RHD (17.35mm) and Ours + PBRHand
(17.12mm) is 18.25mm and 18.48mm lower than CHP3D +
RHD (35.6mm).

We also evaluate our method on the Dexter+Object dataset
and compare to the state-of-the-art Latent 2.5D [32] and
Mueller [4]. Table IX shows the numerical evaluations. We can
observe that our method trained on RHD+Stereo performs bet-
ter than Mueller [4] (Ours AUC:0.572, Mueller AUC:0.560).
Since Latent 2.5D has not released the code yet, we use the
reported scores which is trained on RHD+Stereo. We also
train our model on RHD+Stereo, and we observe that our
method achieves comparable performance to Latent 2.5D on
Dexter+Object dataset (Ours EPE:43.31, AUC:0.572, Latent

TABLE VIII
EPE AND AUC (BETWEEN 20 - 50MM) EVALUATION ON RHD AND

STEREO DATASETS. OUR CASCADED NETWORK WITH PRETRAINING ON
OUR DATASET SHOWS CONSISTENTLY BETTER PERFORMANCE THAN

OTHERS. OURS: OUR CASCADED NETWORK. AUC IS SHOWN IN
PERCENTAGE POINTS.

RHD Stereo
EPE↓ AUC↑ EPE↓ AUC↑

CHP3D+RHD [3] 35.60 67.0 12.2 94.80
Weakly-sup [7] - 88.7 - 99.4

Spurr [41] - 84.9 - 98.6
Ours+RHD 17.35 88.93 7.03 99.68

Ours+PBRHand 17.12 90.39 6.39 99.79
Ours wo pretrain 17.35 88.93 7.07 99.62

TABLE IX
EPE AND AUC (BETWEEN 0-100MM) ON DEXTER+OBJECT DATASETS.

OUR CASCADED NETWORK WITH PRETRAINING ON OUR DATASET SHOWS
CONSISTENTLY BETTER PERFORMANCE THAN OTHERS. OURS: OUR

CASCADED NETWORK. ’*’ MEANS THE EPE AND AUC FOR THE
ABSOLUTE 3D POSES AS LATENT 2.5D [32]. AUC IS SHOWN IN

PERCENTAGE POINTS.

EPE↓ AUC↑
Mueller [4] - 56.0

Latent 2.5D [32] 45.54* 57.00*
Ours 43.31 57.20

2.5D EPE:45.54, AUC:0.570).
Finally, we also evaluate our method on Hands-2019 online

challenge [31], which is especially challenging due to occlu-
sions of object. For Hands-2019, we submit our hand pose
results online, and adopt the evaluation protocol in [31] to
calculate mean joint errors for four splits of the test set of
Hands-2019 (whether the test split has hand shapes or objects
present in the training set), i.e. EXTRAP., INTERP., OBJECT,
and SHAPE (refer to [31] for details). EXTRAP., OBJECT and
SHAPE are three data splits to verify the generalization power
of the model for hand shapes and objects, and EXTRAP. is
the key test split for evaluation in Hands-2019 competition.
Table X shows the comparison to the state-of-the-art methods
[42], [43] (submitted by ’User:yhasson’ at 2019-10-09 and
’User:lin84’ at 2019-10-07). Their methods train networks on
a large-scale synthetic dataset of hands grasping objects [42]
or hands with neighboring objects [43]. Compared to the syn-
thetic data used in [42], [43], our PBRHand dataset does not
contain objects, thus it has domain gap to Hands-2019 dataset.
Our method pretrained on PBRHand (‘User:Fractality’) can
still achieve better performance on the data splits of EXTRAP.,
INTERP. and OBJECT than [42]. Compared to [43], our
method performs better in all the four test data splits. We
also observe that our cascaded network performs better when
pretrained on our PBRHand compared to RHD dataset. These
results indicate the generalization ability our model for hand
shape and object.

B. Ablation Study

To further understand the task and the network, we conduct
several comparison experiments using our multi-task network
and our single task network with/without pretrain.

a) Does pre-training help?: From Table XI, we can
observe that by pretrained on our PBRHand dataset the
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TABLE X
COMPARISON OF MEAN JOINT ERRORS (IN MM) ON HANDS-2019 ONLINE

CHALLENGE [31]. OUR CASCADED NETWORK PRETRAINED ON PBRHAND
PERFORMS BETTER THAN OTHERS. OURS: OUR CASCADED NETWORK.

EXTRAP.↓ INTERP.↓ OBJECT↓ SHAPE↓
User:yhasson [42] 38.42 7.38 31.82 15.61

User:lin84[43] 31.51 19.15 30.59 23.47
Ours 36.70 14.23 40.51 32.88

Ours+PBRHand (User:Fractality) 28.81 6.61 22.88 20.76
Ours+RHD 30.31 11.24 30.59 24.63

TABLE XI
COMPARISON OF 3D EPE (IN MM) AND AUC (BETWEEN 20MM TO 50MM)

ON STEREO AND RHD DATASETS USING OUR SINGLE TASK AND
CASCADED MULTI-TASK METHODS WITH OR WITHOUT PRETRAIN. AUC IS

SHOWN IN PERCENTAGE POINTS.

Stereo hand dataset RHD dataset
EPE↓ AUC↑ EPE↓ AUC↑

single wo pretrain 8.93 98.70 18.77 86.81
single w pretrain 7.13 99.64 18.21 87.90

cascade wo pretrain 7.07 99.62 17.35 88.93
cascade w pretrain 6.39 99.79 17.12 90.39

average errors of hand joints with cascaded network (with
finetune) drop by 0.68mm and 0.23mm for Stereo and RHD
datasets. From Table XII, considering the same network with
different training data, we can observe that the networks
trained on PBRHand provide consistently better performance
on Dexter+Object dataset. We can see that pretraining on
our PBRHand dataset is an effective way to enhance the
performance of color based hand pose estimation for single
task or multi-task networks.

(a)  Input image  (b) Ground truth pose   (c) Hand pose with 
our cascaded network

(d) Hand pose with 
single task network 

Fig. 16. Examples of results with our method on Stereo dataset. (a) input
image. (b) the ground truth pose. (c) hand pose with our cascaded network.
(d) hand pose with single joint network wo depth cascade.

b) Does multi-task help?: In order to evaluate the multi-
task networks for hand pose estimation, we compare the
baseline single-task network, which shares the same network

TABLE XII
COMPARISON OF MEAN 3D EPE (IN MM) AND AUC (BETWEEN 0MM TO

100MM) ON DEXTER+OBJECT DATASET [10]. WE USE DIFFERENT
TRAINING DATA COMBINATION AS WELL AS OUR SINGLE TASK AND

CASCADED MULTITASK NETWORKS. FROM THE TABLE WE CAN OBSERVE
THAT OUR CASCADED NETWORK TRAINED ON PBRHAND ONLY

PERFORMS THE BEST (HIGHEST AUC AND LOWEST EPE). AUC IS SHOWN
IN PERCENTAGE POINTS.

single cascade
EPE↓ AUC↑ EPE↓ AUC↑

Stereo 50.04 51.40 52.35 48.50
RHD 49.05 51.20 48.80 51.40

RHD + Stereo 51.78 50.40 43.31 57.20
PBRhand 43.30 57.40 40.70 59.53

architecture as the cascaded task network. The difference is
that the single task network does not adopt auxiliary depth
recovery task and does not use the depth loss. Fig. 16 and
Table XI shows the accuracy of 3D hand joints with and with-
out multi-task supervisions. We can observe that results with
our cascaded network is consistently better than results with
single task network. For Stereo and RHD, the average errors of
hand pose using cascaded network with pretraining drop about
2.72mm, 1.09mm compared to the single task network with
pretraining, and the average errors of the cascaded network
without pretraining drop about 1.86mm, 1.42mm, compared to
the single task network without pretraining. For Dexter+Object
dataset (See Table XII), by comparing networks trained on
the same datasets, we can observe that our cascaded multi-
task network performs better than others. First, it is generally
better than the single joint task network (except trained only
on Stereo dataset, which might be caused by the limited
size and diversity of the dataset). One possible explanation
is that multi-task cascaded training can provide more cues
(e.g.depth features) and improve the feature extraction on early
layers (color image features in our network). We see that our
cascaded multi-task network is useful for the training with and
without pretraining.

c) Feature cascade vs. input/output cascade: The pro-
posed cascaded network uses image features and depth fea-
tures instead of input image and output depth. We evaluate
the effects of different cascade inputs on hand pose estimation
performance. We compare the following settings: RGB +D,
RGBfeature + D, RGB + Dfeature, D, Dfeature and the
proposed RGBfeature + Dfeature. RGB and RGBfeature

mean the input color image and the feature extracted with
first three convolution layers of our network. D and Dfeature

are the recovered depth with depth recovery network and the
depth-aware feature extracted with the first U-net in Fig. 14.
Table XIII shows that feature cascade would produce the best
result for joint prediction.

More ablation studies can be found in the supplementary
document.

C. Runtime and Qualitative Experiments

Our network contains about 26.7M parameters, and the
testing time is 180 fps on a computer with a NVIDIA Titan
X GPU, which also has the potential to run on embedding
systems in real-time.
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Stereo

RHD
Fig. 17. Qualitative results on Stereo and RHD datasets. From left to right: input color image and the predicted joint; ground truth depth; predicted depth
image; difference between ground truth and the prediction.

TABLE XIII
CASCADE EVALUATION. WE TRIED DIFFERENT COMBINATION OF DATA
THAT CASCADED FOR JOINT ESTIMATION. RGBfeature +Dfeature

PRODUCES THE BEST RESULT, WHICH IS THE CHOOSEN NETWORK
STRUCTURE. ONLY PASS D TO JOINT NETWORK WOULD IMPROVE DEPTH
PREDICTION, BUT CANNOT PRODUCE THE BEST JOINT PREDICTION. AUC

IS SHOWN IN PERCENTAGE POINTS.

Depth Joint
Cascade type RMSE ↓ MAE ↓ EPE ↓ AUC ↑
RGB +D 9.08 7.59 8.10 99.17

RGBfeature +D 9.52 7.41 8.13 99.32
RGB +Dfeature 15.46 12.82 8.55 98.96

D 8.42 6.63 7.78 99.47
Dfeature 8.93 6.94 7.13 99.59

RGBfeature +Dfeature 8.68 6.63 7.07 99.68

Fig. 17 shows our results on Stereo and RHD dataset, with
our model pretrained on PBRHand and finetuned on Stereo and
RHD training dataset. More qualitative results using captured
real data can be found in the supplementary document.

VII. CONCLUSION

In this paper, we construct a large-scale hand pose dataset
with photo-realistic rendering color images and various ground
truths. Based on the dataset, we first verify on three hand pose
related tasks, and find that pretraining on our photo-realistic
rendering dataset can enhance the performance of the state-of-
the-art models. With the help of our dataset, we further design
a cascaded multi-task network to recover 3D hand pose from a
color image with an intermediate depth supervision. We find
that our dataset benefits the model pretraining by providing
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various ground truths and our cascaded network can improve
the performance, both enhancing the pose estimation results.

APPENDIX
DETAILS OF OUR NETWORK ARCHITECTURE

Fig. 18 illustrates the details for our network architecture.
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Fig. 18. Full details of our multi-task cascaded network. Kernel size of the convolutional layers and deconvolutional layers is 3. Alpha value of the Leaky
RELU [44] activation function is 0.2. To avoid zero patterns caused by up-sampling, each deconvolutional layer is followed by two convolutional layers.


