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Abstract Skeleton-based hand gesture recognition is

an active research topic in computer graphics and com-

puter vision, and has a wide range of applications in

VR/AR and robotics. Although the spatial-temporal

graph convolutional network has been successfully used

in skeleton-based hand gesture recognition, these works

often use a fixed spatial graph according to the hand

skeleton tree or use a fixed graph on the temporal di-

mension, which may not be optimal for hand gesture

recognition. In this paper, we propose a two-stream

graph attention convolutional network with spatial-temporal

attention for hand gesture recognition. We adopt pose

stream and motion stream as the two input streams

for our network. In pose stream, we use the joint in

each frame as the input; In motion stream, we use the

joint offsets between neighboring frames as the input.
We propose a new temporal graph attention module

to model the temporal dependency, and also use a spa-

tial graph attention module to construct dynamic skele-

ton graph. For each stream, we adopt graph convolu-

tional network with spatial-temporal attention (STA-

GCN) to extract the features. Then we concatenate

the feature of the pose stream and motion stream for

gesture recognition. We achieve the competitive per-

formance on the main hand gesture recognition bench-

mark dataset, which demonstrates the effectiveness of

our method.
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1 INTRODUCTION

Vision-based hand gesture recognition aims to predict

gesture types from videos is an active research area

in computer graphics and human-computer interaction,

and it has a wide range of applications in VR/AR,

healthcare and robotics.

Existing hand gesture recognition methods can be

classified into two categories according to the type of

input: image based methods [12–14] and hand skele-

ton pose based methods [15,16,1,2,6,5]. Image based

methods adopt RGB or RGB-D image sequences as

input, and skeletons based method use 2D/3D hand

joints sequences as input. Compared to image-based

hand gesture recognition methods, hand skeleton based

methods relieves the difficulty caused by the cluttered
background, and also has lower computation cost, thus

can enable real-time hand gesture interactions on mo-

bile devices. With the boom of low-cost depth cameras

and the rapid progress of hand pose estimation research

[18–20], the 2D/3D hand joints can be recovered from

RGB or RGB-D images easily. For example, Leap Mo-

tion and Intel Realsense camera provide hand skeleton

pose in real-time. Thus, hand skeleton based methods

have been the major hand gesture recognition pipeline.

Skeleton-based hand gesture recognition is still chal-

lenging. Existing methods [1,21,3] extract hand-crafted

feature from skeleton sequences and feed the feature to

classifiers for hand gesture recognition. However, these

hand-crafted feature can not model the spatial and tem-

poral information effectively. Recently, several deep learn-

ing based works [15,16,4] are proposed, which feed hand

skeleton sequence into LSTM or CNN networks for hand

gesture recognition. However, these method does not

exploit the spatial connections among joints in each
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frame and temporal connections between joints in neigh-

boring frames well.

Recently, the spatial-temporal graph convolution neu-

ral network (ST-GCN) [22] has been successfully used

in skeleton-based human action recognition, and several

works [5,6] apply it to hand gesture recognition. They

construct the hand skeletons into a spatial-temporal

graph, and use ST-GCN network to extract features.

Compared to the other deep learning based methods,

these ST-GCN based methods can effectively exploit

the connections between the joints in both the spatial

and temporal domains. However, these works often use

a fixed graph according to the kinematic tree of hand

skeleton or use a fixed graph on the temporal dimen-

sion, which may not be optimal for gesture recognition

task as found in [41]. In addition, these ST-GCN meth-

ods often use the raw joint coordinates as input, and

could not capture the motion feature such trajectory

effectively.

In this paper, we propose a two-stream graph atten-

tion convolutional network with spatial-temporal atten-

tion for hand gesture recognition (STA-GCN). Fig. 1

illustrates an overview of our approach. We adopt two-

stream architecture for skeleton-based hand gesture recog-

nition, which uses pose stream and motion stream as in-

put. For both streams, we use the same network struc-

ture. We first initialize the skeleton graph, then we

use spatial-temporal graph convolutional network with

both spatial attention and temporal attention to ex-

tract the feature. In order to encode hand gestures with

multi-scale temporal features, we also adopt the tem-

poral pyramid pooling layer. Then, we feed the feature

of pose stream and motion stream into fully connected

layer, fuse the features and feed to softmax layer for

hand gesture prediction.

Compared to the existing ST-GCN methods [22,

5,6], we construct a dynamic graph using a spatial-

temporal graph attention which can be well adapted

to the input data with diversity. Second, we not only

use the original hand joint coordinates as input for pose

stream, and use the hand skeleton joint offsets between

different frames as input for motion stream. Third, we

use the temporal pyramid pooling [42] to model the

hand gestures with multi-scale temporal features.

Our method is also related to [41], which adopts

the non-local attention mechanism on the GCN-based

action recognition methods for constructing dynamic

skeleton graph. In this paper, motivated by the corre-

lation of different frames in [40], we extend the spatial

attention mechanism proposed in [41] to temporal do-

main, and use more effective motion stream input than

the bone stream used in [41].

Our contributions can be summarized as follows:

1. We propose a graph convolutional network with spatial-

temporal attention for hand gesture recognition. Es-

pecially, we design an effective dynamic graph on

the temporal dimension using a new temporal graph

attention module. In order to encode hand gestures

with multi-scale temporal features, we use the tem-

poral pyramid pooling layer [42];

2. We use a two-stream hand gesture network that uses

both the raw hand skeleton joints and the joint off-

sets between neighboring frames as input. The pro-

posed two-stream network can model the spatial-

temporal context of hand gestures effectively;

3. We achieve competitive performance on the main

hand gesture benchmark datasets.

2 Related Work

2.1 Skeleton-Based Human Action Recognition

Conventional skeleton-based action recognition meth-

ods [23,24] use the hand-crafted feature to model the

human action, but the performance of these methods

are often not satisfied. Recently, several RNN-based

methods [25–30] and CNN-based methods [31–35] for

human action recognition are proposed. RNN-based meth-

ods feed the skeleton coordinate sequences into RNN for

feature extraction and recognition. CNN-based meth-

ods usually encode the skeleton coordinates with a ma-

trix [43], and feed the matrix to CNN for action recog-

nition.

However, CNN and RNN based methods can not

model the connections of the joints effectively. In order

to address this problem, Yan et al. [22] represent the hu-

man joints with a graph, and use the spatial-temporal

graph convolutional network (ST-GCN) for feature ex-

traction. Inspired by Yan et al. [22], several GCN-based

methods [36,37] are designed for action recognition.

They construct the human joint graph using rules in

a heuristic manner. Shi et al. [41] adopts the non-local

attention mechanism on the GCN-based action recog-

nition method by constructing dynamic skeleton graph.

However, they only design the attention mechanism on

the spatial graph, and use a fixed graph on the tem-

poral dimension, thus it could not model the temporal

connections between frames effectively.

2.2 Skeleton-Based Hand Gesture Recognition

Existing hand gesture recognition methods can be di-

vided into two categories: hand-crafted feature based
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Fig. 1 Illustration of our two-stream graph convolutional network with spatial-temporal attention (STA-GCN) for hand
gesture recognition. For pose stream, we use the original joint coordinates as input; For the motion stream, we use the skeleton
joint offsets as input. During training stage, we train pose stream and motion stream separately. During the testing stage, the
features of pose stream and motion stream are concatenated for hand gesture recognition.

methods and deep learning based methods. Conven-

tional hand-crafted feature based methods [1,21,3] of-

ten encode the hand skeleton joint sequences into hand-

crafted features. Deep learning based methods [15,16,

4] encode the skeletons sequences into feature vectors,

and feed them into RNN or CNN to extract spatial-

temporal features. However, these methods do not ef-

fectively exploit the spatial-temporal context of joints

such as the connections between hand joints of each

frame and the connections between hand joints between

different frames.

Inspired by the spatial-temporal graph convolutional
network (ST-GCN) [22], several works [5,6] also explore

ST-GCN for hand gesture recognition. They encode

joint sequences into skeleton graph, and use GCN to

extract features for hand gesture recognition. However,

these works do not model the motion feature explicitly,

or do not use dynamic graph to enhance the represen-

tation capacity of the network.

2.3 Attention Models in Hand Gesture Recognition

Several works [6,4] explore to apply attention mecha-

nism for hand gesture recognition. Chen et al. [6] con-

struct dynamic graph using spatial-temporal attention.

Hou et al. [4] use the mask branch for applying spatial-

temporal attention on each feature extracted by the

convolution network. Compared to the existing works

that adopt attention mechanism on spatial dimension

or temporal dimension separately, our work uses both

spatial attention and temporal attention in GCN for

hand gesture recognition.

3 Methodology

3.1 Overview

Motivated by the two-stream network architecture [38]

in action recognition, we propose two-stream architec-

ture for skeleton based hand gesture recognition. Fig. 1

gives an overview of our approach. We adopt pose stream

and motion stream as our two streams for hand ges-

ture recognition. The two streams use the same network

structure, but use different input data. In pose stream,

we use the joints in each frame as the input; In mo-

tion stream, we use the joint offsets between neighbor-

ing frames as the input. We first initialize the skeleton

graph, then use spatial-temporal graph convolutional

network with the spatial graph attention and tempo-

ral graph attention to extract the spatial-temporal fea-

tures. The output feature of GCN with spatial graph

attention will be fed to the GCN with temporal graph

attention. Then we use the temporal pyramid pooling

layer (TPP) to extract multiple scale temporal features.

Finally, we feed the features into fully connected layer

and softmax for hand gesture recognition. To enhance

the performance of a single stream, the extracted fea-

tures of pose stream and motion stream are concate-

nated for hand gesture recognition.
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Fig. 2 The spatial-temporal joint connections of the initial
graph. The black line denotes the spatial connections and the
blue line denotes the temporal connections.

3.2 Graph Initialization

For a video of T frames with annotatedN joints for each

frame, we define a skeleton graph with the node set V =

{vi,j |i = 1, 2, ..., T, j = 1, 2, ..., N} using joints, where

vi,j denotes the j-th node (joint) in the i-th frame, and

the feature set F = {fi,j |i = 1, 2, ..., T, j = 1, 2, ..., N},
where fi,j denotes the feature vector of node vi,j en-

coded with the position of the joint vi,j .

Fig. 2 illustrates an overview of the graph initializa-

tion. Inspired by [6], we initialize spatial edge, temporal

edge and self-connection edge of the graph as follows

1. The spatial edge connects the node vi,j1 and node

vi,j2 in the same frame, where node j1 and node

j2 have the connected joints in the hand kinematic

skeleton tree.

2. The temporal edge connects the node vi1,j and node

vi2,j of the same node in different frames for |i1 − i2| ≤
K. In our experiment, we set K = 4.

3. The self-connection edge connects the node vi,j it-

self.

3.3 Graph Convolutional Network

After initialing the skeleton graph, we adopt multiple

layers of spatial-temporal graph convolution to extract

high-level features. Denote the input of the spatial-

temporal convolution layer to be a N × T × C tensor,

where N denotes the number of nodes in each frame, T

denotes the number of frames, and C is the number of

channels. The skeleton graph consists of spatial graph

and temporal graph.

Each spatial graph consists of the hand joints of a

frame and the spatial edges (See Sect.3.2). To imple-

ment the graph convolution in the spatial dimension,

the propagation rule can be formulated as follows:

F(l+1) = σ(AsW(l)
s F(l)),As = D̃

− 1
2

s ÃsD̃
− 1

2
s (1)

where As is the normalized adjacent matrix of the spa-

tial graph, W
(l)
s of the size Cout×Cin×1×1 is a weight

matrix to be learned (Cout and Cin are the numbers

of input and output channels, respectively), F(l) and

F(l+1) are the input and output features of the l-th

graph convolutional layer, and σ(·) is the ReLU activa-

tion function. The matrix Ãs = {Ãs(i, j)} of the size

N ×N is an adjacent matrix of the skeleton graph, and

it element Ãs(i, j) denotes whether there is a connec-

tion between the nodes i and j, D̃s is the diagonal node

degree matrix of Ãs.

Each temporal graph consists of the sequence of the

same hand joint and the temporal edges (See Sect.3.2),

and the input feature of temporal graph comes from

the output of the spatial graph. The graph convolu-

tion of the temporal dimension is similar to that of the

spatial dimension. Each temporal graph consists of the

sequence of the same hand joints and temporal edges

(See Section 3.2). In the temporal dimension, the in-

put tensor is transformed to T × N × C, the matrix

Ãt = {Ãt(i, j)} of the size T × T is an adjacent ma-

trix of the temporal graph, and it element Ãt(i, j) de-

notes whether there is a connection between frame i

and frame j. D̃t is the diagonal node degree matrix of

Ãt

3.4 Graph Attention Layer

Existing graph convolutional networks often use a fixed

graph in both training and testing stages, it is diffi-

cult to model the spatial-temporal context effectively

from input skeleton sequences with great diversity. In-

spired by 2S-AGCN [41], we adopt the spatial attention

module in [41], and propose a new temporal attention

module to construct a dynamic skeleton graph using

the hand joint sequences. For each attention module,

we adopt three graph structures as [41], a fixed graph

structure, a global graph that denotes the common pat-

tern learned from the training data, and an specific

graph for each data that denotes the unique pattern

for each data. During the feature propagation, we use

the sum of the adjacent matrices of these three graph

structures as the adjacent matrix. In order to enforce
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the stability of the original model, residual connections

for spatial and temporal attention modules are used.

3.4.1 Spatial Attention Module

For the spatial attention module, we follow [41] to re-

formulate the propagation rule in Eq. (1) as follows:

F(l+1) = σ(AsW(l)
s F(l)) (2)

where the spatial adjacent matrix As = As
1 + As

2 + As
3

is built upon the sum of three matrices: As
1, As

2 and

As
3 (the superscript ’s’ means ’spatial’). Compare to

Eq. (1), the adjacent matrix As in Eq. (2) has two more

matrices As
2 and As

3. The matrix As
2 represents the

global spatial graph that denotes the common pattern

for the training data, and the matrix As
3 represents the

specific spatial graph for each data. Then, we elaborate

on the details to compute As
1, As

2 and As
3 [41].

1) The matrix As
1 is the normalized adjacent matrix

As in Eq. (1).

2) The matrix As
2 is a trainable adjacent matrix.

Compared to As
1 that is fixed, the matrix As

2 is learned

by the training process, which means that the adja-

cency of the graph is fully learned from the training

dataset. In this data-driven way, the model can learn a

specific graph adjacent matrix that can match the hand

gesture recognition task. Compared to the conventional

adjacent matrix As
1, the value of As

2 can be arbitrary,

which indicates the existence of connections and the

correlation strength for the hand joints.

3) The matrix As
3, named as the spatial attention

matrix, can be learned based on the input of the each

layer, and it can learn the connection strength of the

joint connections based on the input data. As a com-

parison, both As
1 and As

2 are both fixed for an input.

Then, we follow [41] to get the matrix As
3. Given

the input feature F(l) of the size B × Cin ×N × T (B

is the batch size of input, Cin is the number of input

channels), we feed it into two different ’1*1’ convolution

layers with the parameters Ws
1 and Ws

2, reshape the

output matrices (Ws
1F

(l))T and Ws
2F

(l) to the sizes of

B×N×CsT and B×CsT×N (Cs is the number of the

’1*1’ convolution layers with the parameters Ws
1 and

Ws
2), then we multiply them to get the attention matrix

As
3 = {As

3(i, j)} of the size B ×N ×N , in which each

element As
3(i, j) represents the connection strength be-

tween node i and node j. In order to enforce As
3(i, j)

within the range of [0, 1], we adopt softmax function to

normalize the matrix As
3 as follows

As
3 = softmax((Ws

1F
(l))TWs

2F
(l)) (3)

3.4.2 Temporal Attention Module

Motivated by the spatial adjacency matrices As
1,A

s
2,A

s
3

in the spatial attention module [41], we extend them

to the temporal dimension, and also use three matri-

ces At
1, At

2 and At
3 to compute the temporal adjacent

matrices (the superscript ’t ’ means ’temporal’). Fig. 3

illustrates our two temporal graph attention modules.

Fig. 3(a) shows the vanilla temporal attention layer,

and Fig. 3(b) shows the temporal attention layer with

dimension reduction in time dimension. The vanilla tem-

poral attention layer contains more parameters than the

temporal attention layer with dimension reduction. In

order to achieve good balance of network capacity and

total parameters of the network, we use both the two

temporal graph attention modules in our network (See

Section 3.6).

With the temporal attention module, we can model

the temporal dependency of feature maps as follows:

F(l+1) = σ(AtW
(l)
t F(l)) (4)

where the temporal adjacent matrix At = At
1+At

2+At
3

consists of At
1, At

2 and At
3 (the superscript ’t ’ means

’temporal’), and W
(l)
t is a weight matrix to be learned.

Similar to As
2 and As

3, At
2 and At

3 represents a global

temporal graph with common pattern of the training

data and a specific temporal graph for each data, re-

spectively. Next, we elaborate on how to compute At
1,

At
2 and At

3.

1) The matrix At
1 of the size T × T represents the

temporal connections between each node. The matrix

At
1 is the normalized temporal adjacent matrix of Ãt

1 =

{Ãt
1(i, j)}, and the value of Ãt

1(i, j) means whether
frame i and frame j are connected in the temporal di-

mension. We set the values of Ãt
1(i, j) to 1, if |i− j| ≤

K; otherwise, we set the values of Ãt
1(i, j) to 0. Then

we normalize the temporal adjacency matrix Ãt
1 with

At
1 = D̃

− 1
2

t Ãt
1D̃

− 1
2

t .

2) The matrix At
2 is a trainable adjacent matrix.

Compared to At
1 that is fixed, the matrix At

2 is learned

from the training dataset.

3) The matrix At
3, named as the temporal atten-

tion matrix, is a learned adjacent matrix from its input.

Given the input feature F (l) of the size B×Cin×N×T
(B is the batch size of input, Cin is the number of input

channels), we feed it into two different ’1*1’ convolu-

tion layers Wt
1 and Wt

2, reshape the output matrices

(Wt
1F

(l))T and Wt
2F

(l) to the sizes of B×T×NCt and

B × NCt × T (Ct is the number of the ’1*1’ convolu-

tion layers with the parameters Wt
1 and Wt

2), then we

multiply these two matrices to get the attention matrix

At
3 = {At

3(i, j)} of the size B × T × T , in which each

element At
3(i, j) represents the connection strength be-
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Fig. 3 Illustration of our temporal attention layer. (a) is the vanilla temporal attention layer; (b) is the temporal attention layer
with dimension reduction in time dimension. The ’1*1’ block denotes the 1*1 convolution operation, the orange block indicates
that the parameters are learnable, the ’Maxpool’ block denotes the 1*2 max pool operation, the ’Conv’ block denotes the
convolution with size 1*2 and step (1, 2),

⊕
denotes the element-wise summation, and

⊗
denotes the matrix multiplication.

tween frame i and frame j. In order to enforce At
3(i, j)

within the range [0, 1], we adopt the softmax function

to normalize the matrix At
3 as follows

At
3 = softmax((Wt

1F
(l))TWt

2F
(l)) (5)

3.5 Temporal Pyramid Pooling Layer

When dealing with the skeleton-based hand gesture recog-

nition problem, one key issue is how to extract effective

features from the input hand skeleton joint sequences.

Inspired by the temporal pyramid pooling (TPP)

[42] that has been successfully used in video based ac-

tion recognition, we apply TPP for our skeleton-based

hand gesture recognition. Benefiting from the advan-

tage of TPP, we can model hand gesture with with

fusing multiple scale features in the temporal dimen-

sion. Fig. 4 illustrates the temporal pyramid pooling

layer. We adopt two levels of feature pooling. At the

first level, we apply average pooling to the feature af-

ter STA-GCN. At the second level, we divide the fea-

ture after the STA-GCN into several segments of the

same length, and conduct average pooling on each seg-

ment. Then we get a fixed length feature by concate-

nating pooling features of the two levels. Compared to

global average pooling, temporal pyramid pooling ex-

tracts more temporal features, which are helpful to en-

hance the hand gesture recognition performance.

Fixed length representation

1*1*256-d2*1*256-d

Feature extracted by  
STA-GCN  

Temporal pyramid pooling

Fig. 4 Illustration of the temporal pyramid pooling layer
(TPP). Here, 256 is the channel number of the last graph
convolution layer.
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Fig. 5 Our hand gesture recognition network architecture
for single stream. We use 10 blocks of spatial-temporal graph
convolutional network with attentions (STA-GCN) for feature
extraction, then use the temporal pyramid pooling (TPP)
layer, a fully connected layer (FC) and a softmax function
for hand gesture recognition.

3.6 Two-Stream STA-GCN for Hand Gesture

Recognition

We propose a two-stream graph convolutional network

with spatial-temporal attention for hand gesture recog-

nition (STA-GCN). Our network adopts pose stream

and motion stream as the two input streams, and for

each stream we adopt the same network architecture.

For the motion stream, we adopt the skeleton joint off-

sets δJ = Ji(tf + τ)− Ji(tf ) for as input, where Ji(tf )

and Ji(tf + τ) to be the positions of the i-th joint at

the frame tf and frame tf + τ (τ is the temporal gap

for sampled neighboring frames). Conceptually, motion

stream is a trajectory-related input.

Fig. 5 gives an overview of network architecture for

single stream. The input layer has a size of B×N×T ×
C. We use 10 blocks of spatial-temporal graph convolu-

tional network with attention (STA-GCN) for feature

extraction, each block includes a spatial graph convolu-

tion layer with attention and a temporal graph convo-
lution layer with attention. The number of convolution

channels of the first five blocks is 64, the channel num-

ber of the next three layers is 128, and the channel num-

ber of the last two layers is 256. The temporal graph

convolution of the 5th block and the 8th block use the

temporal attention layer with dimension reduction in

time dimension (See Fig. 3(b)), and the rest blocks use

the vanilla temporal attention layer (See Fig. 3(a)).

After the 10 blocks of STA-GCN, the extracted fea-

ture is fed to a temporal pyramid pooling layer men-

tioned in Section 3.5 and a fully connected layer with

a softmax function for hand gesture recognition. The

size of the fully connected layer is the number of hand

gesture categories.

3.7 Implementation Details

We use the PyTorch to implement our network architec-

ture. We use Kaiming initialization to initialize the pa-

rameters of weights. During training, we use the dropout

with a probability of 0.5 after temporal pyramid pool-

ing layer. We use Adam [39] optimizer to optimize our

network, and the batch size is set to 60. In order to con-

duct data augmentation, we slightly disturb the hand

joint coordinates with random translations and scales

in each dataset. Because different videos have different

frame lengths, data needs to be filled and sampled. We

processed the frame lengths of all videos to W (W is

set to 64 in our experiment). For videos containing less

than W frames, we randomly fill in blank frames at the

beginning and end of the video in the training set, and

fill in blank frames at the end of the video in the test-

ing set. For videos containing more than W frames, we

randomly select continuous W frames from the video in

the training set, and select continuous W frames from

the video in the testing set.

For the two-stream network architecture, we train

each stream separately during the training stage, and

during the testing stage we sum the feature with the

same weight (0.5) before the softmax layer, and feed to

softmax for hand gesture recognition.

Because different subjects perform hand gestures at

different speeds, the motion stream with a fixed tempo-

ral gap may not be optimal for all gestures. The motion

stream with the small gap is suitable for fast gestures,

but it may introduce abundant frames for slow gestures.

The motion stream using a big gap is suitable for slow

gestures, but it may overlook details for fast gestures.

To solve this problem, we adopt motion stream consist-

ing of three streams with temporal gap of 5, 10, and 15

in the experiment. Therefore, our network actually has

four streams, one pose stream and three motion streams

with different temporal gaps.

4 Experiments

4.1 Datasets and Evaluation Metrics

DHG14/28 dataset [1]. The DHG dataset contains

2800 videos and 14 gestures categories, which are per-

formed 5 times by 20 participants in two finger config-

urations. The key frames of each video are labeled. The

gestures are performed in two ways: using one single

finger or the whole hand. The 3D positions of 22 hand

joints in each frame are provided.

SHREC2017 dataset[2]. The SHREC2017 dataset

contains 2800 videos and 14 gestures categories, per-

formed between 1 and 10 times by 28 participants in two

finger configurations. The 22 joint coordinates are also

provided. Compared to DHG14/28 dataset, SHREC2017
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dataset does not provide the key frame of each video,

which makes it more difficult.

Evaluation Metrics. For DHG14/28, models are eval-

uated by using the leave-one-subject-out cross-validation

strategy. In each experiment, 19 subjects are used for

training and 1 subject is used for testing. For SHREC2017,

the videos have been divided to 1960 training videos

(70% of the dataset) and 840 testing videos (30% of the

dataset). We report the accuracy of 14 gestures and the

accuracy of 28 gestures for both datasets.

4.2 Ablation Study

To further understand the effect of each component of

our network, we conduct several ablation studies.

Effect of Temporal Pyramid Pooling Layer. In

order to evaluate the effect of our temporal pyramid

pooling layer, we conduct comparison experiments with

pose steam on SHREC2017 dataset using the tempo-

ral pyramid pooling layer (TPP) and an alternative

global average pooling layer (GAP). In the compari-

son, we simply replace the temporal pyramid pooling in

our network with global average pooling. Table 1 shows

the hand gesture recognition accuracy. We outperform

the approach using global average pooling by 1.7%. It

demonstrates that the temporal pyramid pooling layer

can model the temporal feature more effectively.

Layer 14 gestures
GAP Layer 91.5
TPP Layer 93.2

Table 1 The hand gesture recognition accuracy on
SHREC2017 dataset using global average pooling layer
(GAP) and temporal pyramid pooling layer (TPP).

Effect of Two-Stream Fusion. Table 2 shows the

recognition accuracy using different streams on SHREC

2017 dataset. We get 93.4% accuracy using the pose

stream with hand joint coordinates as input, and 94.4%

accuracy using the motion stream with the offset of the

joint coordinates between different frames with tempo-

ral gap of 5 as input. Our network using two-stream

fusion outperforms the results with single pose stream

and single motion stream by 1.1% and 0.1%, respec-

tively. This experiment demonstrates that the two-stream

architecture can exploit both pose and movement infor-

mation, and enhance the performance of hand gesture

recognition effectively.

Effect of Different Adjacency Matrices in Spatial

Attention Layer. Table 3 shows the recognition accu-

racy using different spatial adjacent matrix on SHREC-

Stream 14 gestures
Pose stream 93.2

Motion stream 94.4
Two-streams 94.5

Table 2 The accuracy of different streams on SHREC2017
dataset.

2017 dataset. We observe that our method using the ad-

jacent matrix As
1 + As

2 + As
3 gains 2.4% and 7.0% over

our method using the original adjacent matrix As
1 for

14 gestures and 28 gestures. This demonstrates that the

graph attention layer is effective. We evaluate the per-

formance using other adjacent matrices As
1+As

2, As
1+As

3

and As
2 +As

3, and find that they all perform worse than

that with the adjacent matrix As
1 +As

2 +As
3. Therefore,

we choose to use As
1 + As

2 + As
3 as the spatial adjacent

matrix for graph convolution.

Spatial adjacent matrix 14 gestures 28 gestures
As

1 93.0 84.8
As

2 95.1 91.7
As

3 94.3 88.7
As

1 + As
2 94.6 92.1

As
1 + As

3 93.2 87.4
As

2 + As
3 95.1 91.1

As
1 + As

2 + As
3 95.4 91.8

Table 3 The accuracy of our method using different spatial
adjacent matrix on SHREC2017 dataset.

Effect of Different Adjacency Matrices in Tem-

poral Attention Layer. In order to investigate the

effect of the proposed temporal attention layer, we con-

duct comparison experiments with the spatial adjacency

matrix As = As
1 + As

2 + As
3 and different temporal

adjacency matrices. Table 4 shows the recognition ac-

curacy using different temporal adjacent matrices on

SHREC2017 dataset. We observe that our method us-

ing the adjacent matrix At
1 + At

2 + At
3 gains 1.4% and

7.0% over our method using the original adjacent ma-

trix At
1 for 14 gestures and 28 gestures. This demon-

strates that our temporal graph attention layer is ef-

fective. We evaluate the performance using At
2, At

3 and

At
2 +At

3, and observe that they all perform worse than

using At
1 +At

2 +At
3, because they lack the original tem-

poral connections between the adjacent frames. We also

evaluate the performance using other adjacent matrix

At
1 +At

2 and At
1 +At

3, and find that they also perform

worse than the adjacent matrix At
1 + At

2 + At
3. There-

fore, we choose to use At
1 + At

2 + At
3 as the temporal

adjacent matrix for graph convolution.

Effect of Spatial and Temporal Attention Layers.

In order to verify whether the spatial and temporal at-

tention layers are useful, we conduct experiments with
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Temporal adjacent matrix 14 gestures 28 gestures
At

1 94.8 90.5
At

2 92.9 88.8
At

3 94.3 89.6
At

1 + At
2 94.1 90.2

At
1 + At

3 95.0 90.7
At

2 + At
3 94.2 89.8

At
1 + At

2 + At
3 95.4 91.8

Table 4 The accuracy of our method using different tempo-
ral adjacent matrices on SHREC2017 dataset.

different attention settings. Table 5 shows the recog-

nition accuracy using different attention modules on

SHREC2017 dataset. ’Baseline’ means that we use the

same network architecture of our full model, and use the

original propagation rule (Eq. 1) for spatial and tempo-

ral dimensions. ’Spatial Attention’ means that we use

the spatial adjacency matrix As = As
1+As

2+As
3 and the

temporal adjacency matrix At = At
1. ’Spatial-Temporal

Attention’ means that we use the spatial adjacency ma-

trix As = As
1+As

2+As
3 and the temporal adjacency ma-

trix At = At
1 +At

2 +At
3. We observe that: 1) For 14 ges-

ture classification task, the performance of our method

with spatial-temporal attention gains 0.6% and 3.4%

over our method with spatial attention and our base-

line method; 2) For 28 gesture classification task, the

performance of our method with with spatial-temporal

attention gains 1.3% and 8.9% over our method with

spatial attention and our baseline method. Therefore,

both the spatial attention and our temporal attention

are effective to improve the gesture recognition accu-

racy.

Method 14 gestures 28 gestures
Baseline 92.0 82.9

Spatial Attention 94.8 90.5
Spatial-Temporal Attention 95.4 91.8

Table 5 The accuracy of our method using different atten-
tion modules on SHREC2017 dataset.

Our Motion Stream vs. Bone Stream in [41]. In

order to investigate the effect of other types of the sec-

ond stream, we compare the performance of our method

(single stream) with our motion stream and the bone

stream (B-stream) used in [41]. For bone stream, each

bone is represented as a vector from a joint from its par-

ent joint. Table 6 shows the performance of our single

stream network with motion stream and bone stream.

We can see that our motion stream can achieve bet-

ter performance. The possible reason that our motion

stream is better could be that bone stream overlooks

the temporal movement of joints, while most types of

hand gesture are related to such movement.

Method 14 gestures 28 gestures
Ours (bone stream[41]) 78.6 74.5
Ours (motion stream) 94.4 89.6

Table 6 Performance comparison of our motion stream and
bone stream on SHREC2017 dataset.

4.3 Visualization of the Temporal Attention

Fig. 6 shows temporal attention of the gesture “Shake”

in SHREC2017 dataset. Fig. 6(a) and (d) show tem-

poral attention matrices of of the first and fifth STA-

GCN block. The gray value in the matrices means the

connection strength of each pair of frames. Since we

adopt sampled 64 frames from all videos by data pre-

processing, temporal attention matrices are of the size

64×64. From Fig. 6(a), we can see that frame 12 and

frame 40 have strong connection with the other frames.

Fig. 6(b) and (c) are depth images of frame 12 and

frame 40, respectively. From Fig. 6(d), we can see that

frame 1, 24 and frame 60 have strong connection with

the other frames. Fig. 6(e), (f) and (g) are the depth

images of frame 1, 24, and 60, respectively. The images

in Fig. 6(b) and (c) are both hand moving to the right,

and the images in Fig. 6(e), (f) and (g) are all hand

moving to the left. We notice that hand movements to

left and right are the key frames related to the ges-

ture “Shake”. Therefore, our temporal attention could

extract key frames related to the hand gesture.

4.4 Comparisons with State-of-the-art Methods

We compare our method with state-of-the-art methods

on two standard benchmark datasets: DHG14/28 [1]

dataset and SHREC2017 [2] dataset. We compare with

the existing approaches using hand-crafted features [10,

7] [3,1], deep learning based approaches [8,11,4,17], and

graph-based approaches [22,5,6]. Table 7 and Table 8

show the comparison results.

Method 14 gestures 28 gestures
HIF3D [10] 90.4 80.4

De Smedt et al. [7] 88.2 81.9
Devineau et al. [11] 91.2 84.3

ST-GCN [22] 92.7 87.7
STA-Res-TCN [4] 93.6 90.7

ST-TS-HGR-NET [5] 94.29 89.4
DG-STA [6] 94.4 90.7

2S-AGCN [41] 93.3 91.1
DeepGRU [17] 94.5 91.4
Our method 95.4 91.8

Table 7 Comparisons with state-of-the-art methods on
SHREC2017 dataset.
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(a) of the first 

STA-GCN block

(b) Depth of frame 12 (c) Depth of frame 40

(e) Depth of frame 1 (f) Depth of frame 24 (g) Depth of frame 60 (d)        of the fifth 

STA-GCN block

Fig. 6 Visualization of a temporal attention matrix At
3 of gesture “Shake”. First row: visualization of the temporal attention

of the first STA-GCN block. (a) Temporal attention matrix At
3. (b) Depth image of frame 12. (c) Depth image of frame 40.

Second row: visualization of the temporal attention of the fifth STA-GCN block. (a) Temporal attention matrix At
3. (e) is a

depth image of frame 1. (f) is a depth image of frame 24. (g) is a depth image of frame 60.

Method 14 gestures 28 gestures
SoCJ+HoHD+HoWR[1] 83.1 80.0

De Smedt et al. [7] 82.5 68.1
CNN + LSTM[8] 85.6 81.1
Chen et al. [15] 84.6 80.3

DPTC [9] 85.8 80.2
STA-Res-TCN [4] 89.2 85.0

2S-AGCN[41] 89.9 86.5
ST-GCN [22] 91.2 87.1
DG-STA [6] 91.9 88.0
Our method 91.5 87.7

Table 8 Comparisons with state-of-the-art methods on
DHG14/28 dataset.

Comparisons with State-of-the-art Method on

SHREC2017 dataset. Compared to DHG14/28 dataset

that contains the labeled key frames of videos, SHREC

2017 dataset only contains the raw videos captured by

the cameras that makes it more difficult for hand ges-

ture recognition. Table 7 compares our method with

state-of-the-art methods on SHREC2017 dataset. We

outperform state-of-the-art method DeepGRU on 14

gestures and 28 gestures recognition by 0.9% and 0.4%.

Comparisons with State-of-the-art Methods on

DHG14/28 dataset. Table 8 compares our method

with state-of-the-art hand gesture recognition methods

on DHG14/28 dataset. Our method outperforms most

of state-of-the-art methods except DG-STA, and our

method is superior to 2S-AGCN and ST-GCN by 1.6%

and 0.3% for 14 gestures recognition, and 1.2% and

0.6% for 14 gestures recognition, respectively. We can

see that our method can achieve competitive results.

Comparisons with 2S-AGCN [41]. We also com-

pare our method with 2S-AGCN [41]. The method 2S-

AGCN is proposed for skeleton-based action recogni-

tion. In order to conduct fair comparison, we train 2S-

AGCN on DHG14/28 and SHREC2017 dataset, and

use the learned models for evaluation. In Table 7 and

Table 8, we show the performance of 2S-AGCN mod-

els on SHREC2017 and DHG14/28 dataset. We can

observe that: 1) For SHREC2017, our method outper-

forms 2S-AGCN by 2.1% on 14 gestures recognition and

0.7% on 28 gestures recognition; 2) For DHG14/28, our

method outperforms 2S-AGCN by 1.6% on 14 gestures

recognition and 1.2% on 28 gestures recognition.

5 Conclusions

In this paper, we propose a new network architecture

for hand gesture recognition, a two-stream graph con-

volutional network with spatial-temporal attention. We
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adopt a two-stream architecture to model the pose fea-

ture and motion feature of hand gesture. For each stream,

we encode the input as a graph, design a new temporal

graph attention module to model the temporal depen-

dency, and also use a spatial graph attention module

to construct dynamic skeleton graph. In order to ex-

tract multiple scale temporal features of hand gesture,

we use an effective temporal pyramid pooling layer.

Experiments on two main benchmark datasets demon-

strate that our method can achieve competitive perfor-

mance. Although our method is designed for hand ges-

ture recognition, it can also inspire related researches

(such as action recognition) that can be modeled as

spatial-temporal graph.
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