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Joint Hand Detection and Rotation Estimation
Using CNN

Xiaoming Deng, Yinda Zhang, Shuo Yang, Ping Tan, Liang Chang, Ye Yuan, and Hongan Wang

Abstract—Hand detection is essential for many hand related
tasks, e.g. recovering hand pose, understanding gesture. However,
hand detection in uncontrolled environments is challenging due to
the flexibility of wrist joint and cluttered background. We propose
a convolutional neural network (CNN) which formulates in-plane
rotation explicitly to solve hand detection and rotation estimation
jointly. Our network architecture adopts the backbone of Faster
R-CNN to generate rectangular region proposals and extract local
features. The rotation network takes the feature as input and
estimates an in-plane rotation which manages to align the hand,
if any in the proposal, to the upward direction. A derotation layer
is then designed to explicitly rotate the local spatial feature map
according to the rotation network and feed aligned feature map
for detection. Experiments show that our method outperforms
the state-of-the-art detection models on widely-used benchmarks
such as Oxford and Egohands database. Further analysis show
that rotation estimation and classification can mutually benefit
each other.

Index Terms—Hand detection, rotation estimation, convolu-
tional neural networks.

I. INTRODUCTION

Locating human hands and knowing their pose are ex-
tremely useful in human-computer interaction and robotics.
It helps computers and robots to understand human intentions
[1] [2] [3] [4] [5] [6], and provides a variety of clues, e.g.
force, pose, intention, for high level tasks. While generic
object detection benchmarks have been refreshing over the
last decade, hand detection and pose estimation from a single
image, however, is still challenging due to the fact that hand
shapes are of great appearance variation under different wrist
rotations and articulations of fingers [7] [8].

In this paper, we propose to solve the hand detection prob-
lem jointly with in-plane rotation estimation. These two tasks
are closely related and could benefit each other. Calibrating
training data under different rotation to upright position results
in rotation invariant feature, which relieves the burden of
the detection/classification model. While in return, detection
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model can verify if the rotation estimation is reasonable. How-
ever, due to the nature of the convolutional neural networks,
rotation invariance is more difficult to achieve than translation
invariance, which prevents us from an end-to-end optimization.
As a result, previous work [9] usually handle transformation
estimation and detection separately or in an iterative fashion,
which may not achieve a good optima.

To tackle this issue, we design a derotation layer, which
explicitly rotates a feature map up to a given angle. This
allows us to jointly optimize the network for two tasks simul-
taneously (refer to Fig. 2 for the network structure). Recently,
spatial transformer networks (ST-CNN) [10] also presented a
differentiable module to actively spatially transform feature
maps with CNN. However, their transformation is learned
unsupervised such that could be any arbitrary rotation that
can not be interpreted directly (the discussion that ST-CNN
may not be an ideal hand detection model are shown in the
appendix). Also, the transformation space is typically huge
and would require much more data and time to converge.
Comparatively, our rotation estimation network is aimed for
upright alignment, such that the output can be directly used
for related tasks, e.g. hand pose estimation. It is also trained
supervised, which is more likely to converge.

The overall pipeline of our system is shown in Fig. 1. Our
network is built on the backbone of Faster R-CNN with a
derotation layer inserted after the ROI pooling. Taking the
local feature after ROI pooling for each of the proposal as
input, the rotation estimation network outputs an in-plane
rotation, which is taken by the derotation layer to align the
local feature map. The detection network then takes the aligned
feature map and produces a binary classification to tell if the
proposal contains a hand. The overall model can be trained
end-to-end and runs efficiently during testing process.

The contributions of this paper are mainly in two aspects.
First, we propose, by our knowledge, the first framework
that jointly estimates the in-plane hand rotation and performs
detection. Experiment shows that we achieve significant better
performance than state-of-the-art on widely used benchmarks.
Second, we design the derotation layer, which allows end-to-
end optimization with two tasks simultaneously. The rotation
estimation network is trained with strong supervision, which
converges more efficiently.

II. RELATED WORK

Recent hand detection methods from a single image can be
classified into four categories:
Skin Detection Method. These methods build a skin model
with either Gaussian mixture models [11], or using prior
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Fig. 1. Pipeline of our system: Joint hand detection and rotation estimation. We first generate region proposals from the input image and feed them into
the neural network. The in-plane rotation is estimated by the rotation network, and applied back to the input proposal. The aligned data are then fed into the
detection network. Thanks to the derotation layer, two tasks are jointly optimized end-to-end.

knowledge of skin color from face detection [12]. However,
these methods often fail to apply to hand detection in general
conditions due to the fact that complex illuminations often
lead to large variations in skin color and make the skin color
modelling problem challenging.
Template Based Detection Method. These methods usually
learn a hand template or a mixture of deformable part mod-
els. They can be implemented by Harr features like Viola
and Jones cascade detectors [13], HOG-SVM pipeline [13],
mixtures of deformable part models (DPM) [7]. A limitation
of these methods is their use of weak features (usually HOG or
Harr features). There are also methods that detects human hand
as a part of human structure, which uses the human pictorial
structure as spatial context for hand position [14]. However,
these methods require most parts of human are visible, and
occlusion of body parts makes hand detection difficult [15].
Per-pixel Labeling Detection Method. A pixel labeling ap-
proach [8] has shown to be quite successful in hand detection
in ego-centric videos. In [16], the pixel labeling approach
is further extended to a structured image labeling problem.
However, these methods require time-consuming pixel-by-
pixel scanning for whole image.
Detection Method with Pose Estimation. These methods can
be classified as two types: 1) first estimate the object pose,
and then predict the object label of the image derotated with
the object pose; Rowley, Baluja, and Kanade [9] proposed a
seminal rotation invariant neural network-based face detection.
The system employs multiple networks: the first is a rotation
network which processes each input window to determine
its orientation, and then uses this information to prepare the
window for one or more detector networks. 2) simultaneous
pose estimation and detection. He, Sigal and Sclaroff [17]
proposed a structured formulation to jointly perform object
detection and pose estimation. Fidler et. al. [18] proposed a 3D
object detection and viewpoint estimation with a deformable
3D cuboid model. As far as we know, less attention is paid on
using convolutional neural networks to jointly model object
detection and rotation estimation problems for 2D images.

III. APPROACH

We present an end-to-end optimized deep learning frame-
work for joint hand detection and rotation estimation with a

single image. The overall pipeline is illustrated in Fig. 2. Our
network is built on the backbone of Faster R-CNN with a
derotation layer inserted after the ROI pooling. Our method
first generates rotation agnostic region proposals. These region
proposal can be generated using a typical region proposal
network (RPN) from Faster R-CNN or other methods based
on deep feature that enables the end-to-end training. Taking
the local feature after ROI pooling for each of the proposal
as input, the rotation network performs a regression task to
estimate an in-plane rotation that could align the local feature
map. Then, the local feature map is explicitly rotated according
to the result from the rotation network, and passes through the
detection network for a confidence score. Since the feature
map is supposed to be well aligned, the detection network
does not need to handle the alignment and thus performs more
reliably. The rotation transformation is done by the derotation
layer, which allows back propagation and enables an end-
to-end training. Different to ST-CNN [10], both the rotation
network and detection network are trained under supervision,
therefore the output of the rotation network is guaranteed for
the desired data alignment.

A. Proposal Generation

Region proposal generation is important in a typical object
detection system, and a variety of category-independent region
proposals are proposed including selective search [19], ob-
jectness [20], and category independent object proposals [21].
However, there is limited work studying the efficacy of these
methods for human hand with extremely articulated shape.
Therefore, we conduct a variety of region proposal methods.
Besides [19] and [20], we additionally run two competitive
methods:

1) Region Proposal Networks: We also use state-of-the-
art region proposal networks (RPN) [22] to extract hand
proposals. RPN is a fully convolutional network that takes
an image as input and outputs a set of object proposals and
the corresponding objectness score.

We use state-of-the-art region proposal networks (RPN)
[22] to extract hand proposals. RPN is the front end of the
Faster R-CNN network that takes an image as input and
outputs a set of rectangular shaped object proposals and their
corresponding objectiveness scores. RPN can also be easily
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Fig. 2. Overview of our model with region proposal networks (RPN). The network consists of five parts: 1) a shared network for learning features for
RPN network, rotation estimation and detection tasks; 2) RPN network to extract hand region proposals; 3) a rotation network for estimating the rotation of
a region proposal; 4) a derotation layer for rotating inputted feature maps to a canonical pose; 5) a detection network for classifying the derotated proposal.
These modules are jointly used to learn an end-to-end model for simultaneous hand detection and rotation estimation.

combined with other components of the network and enable
end-to-end training, which is desirable for our purpose.

2) Deep Feature Proposal: We also adopt a standalone
discriminative approach to generate hand region proposal. For
each testing image, we build a 5-level image pyramid where
each layer doubles the resolution of the layer on top. Then, we
feed each layer into Alexnet [23] pretrained on ImageNet and
extract the conv5 feature. During training, we train 8 SVM
binary classifier, with different aspect ratio, to detect hand-
like region on the conv5 feature pyramid in a sliding window
fashion. This approach allows us to thoroughly search through
the translation, scale, and aspect ratio space to guarantee the
recall. The thresholds for SVM classifier is calibrated on the
validation set as the highest score producing 100% recall, that
is, 100 percent of the positive data is covered with at least 0.5
Intersection over Union (IOU). Fig. 5 shows that our method
ensures high recall while keeping the number of proposal per
image comparable.

B. Rotation Aware Network

In this section, we introduce the rotation aware neural
network to decide if a region proposal contains a hand.

1) Network Structure: Our network is built on the backbone
of Faster R-CNN with a derotation layer inserted after the
ROI pooling (refer to Fig. 2). The network starts with 2
convolution+relu+pooling and 3 convolution+relu to extract
features from input image. Built upon this feature, RPN net-
work consists of convolution+relu followed by 1 convolution
layers to extract region proposals. Taking the local feature
after ROI pooling for each of the proposal, the rotation
consists of 3 fully connected layers and estimates the angle
to rotate the hand, if any, in the proposal could be aligned
to the upward direction. We formulate the rotation estimation
problem into a regression problem. Given a rotated hand, the
rotation network performs as a regressor and outputs a two
dimensional rotation estimation vector l = (cosα, sinα). This
representation automatically smooths the jump between 0◦ and
360◦ and empirically works better than directly estimating
the angle (refer to Table II). In addition, this representation
has good geometric meaning. l means a point on unit circle,
Euclidean distance d of two vectors l1 and l2, which can
be computed with 2 sin θ

2 , increases as the in-between angle
θ ∈ [0, π] grows. Afterward, a derotation layer rotates the

用真实的hand proposal 和feature map画这个图

In Fig. 3, the authors plotted the feature map extracted by the shared network. However, the feature map looks like noise which will make readers confused. 
I suggest the authors to apply some CNN visualization method to visualize the feature map which will be more meaningful. In addition, as shown in Fig. 3, 
the rotated feature map corresponds to an upright hand pose. But this is lack of experimental verification.
I suggest the authors to conduct experiments to verify this assumption.

Rα

Hand Image Hand ImageFeature Map Feature Map

Fig. 3. Illustration of applying derotation transformation to input feature map.
The 6× 6 feature map is the output of ROI pooling in Fig. 2. The derotation
layer aims to warp the input feature map to a canonical hand pose by Rα.
In this work, the canonical hand pose is an upright hand pose as shown in
the right part of this figure.

feature from ROI pooling according to the estimated in-plane
rotation l from the rotation network. The rotated feature is
then fed into 3 fully connected layers to perform a binary
classification, telling if the proposal contains a hand. Since
the derotation layer is differentiable, the whole network can be
optimized end-to-end, and all tasks can be jointly optimized.

2) Derotation Layer: Derotation layer is a layer which
applies a rotation transformation to a feature map during a
single forward pass. In our scenario, the input of a derotation
layer is the feature map computed from the original image and
a in-plane rotation angle predicted from either the rotation
network or ground truth, and the output of this layer is the
derotated feature map under the given rotation angle, while
supposedly under the canonical upright hand pose (refer to
Fig. 3).

Specifically, if α is the in-plane rotation angle we want to
apply, the derotation transformation is[

x′

y′

]
=

[
cosα − sinα
sinα cosα

]
︸ ︷︷ ︸

Rα

[
x
y

]
(1)

where [x′, y′] is the target canonical coordinates of the regular
grid in the output feature map under the canonical upright hand
pose, [x, y] is the source coordinates of the regular grid in the
input feature map. Note that [x′, y′] and [x, y] are coordinates
relative to the center of feature map.

In our implementations, we use inverse mapping to get the
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output feature map. In other word, for each pixel [x′, y′] of
the output we get the corresponding position [x, y] in the input
feature map. Since [x, y] is often not located on a regular grid,
we calculate the feature by averaging the values from its four
nearest neighbor locations. We pad zero to [x, y], which is
outside of the regular grid.

The back-propagation can be done with a record of the
mapping between coordinates between feature map before
and after the derotation layer. Updating value on [x′, y′] is
backward propagated to the coordinates from which its value
comes, which is in a similar fashion as some pooling layer
and ROI layer in [24] [22].

Denote ul and ul+1 to be the input and output of the
derotation layer. Let L be the final loss (refer to Eq.(2)) and
∂L
∂ul

be the gradient signals of layer l back propagated from
the convolutional network. We can calculate the derivative as
follows

∂L

∂ul(x, y)
=

∑
i

I(x, y, x′i, y
′
i)

∂L

∂ul+1(x′i, y
′
i)

where [x′i, y
′
i] is the location of pixel i in feature map ul+1

(In back-propagation, denote [x, y] to be coordinate located
on a regular grid of ul). The function I(x, y, x′i, y

′
i) is 1

if the value at [x, y] is propagated to [x′i, y
′
i], otherwise,

I(x, y, x′i, y
′
i) is 0. Therefore, the partial derivative ∂L

∂ul+1(x′
i,y

′
i)

is accumulated to ∂L
∂ul(x,y)

. The partial derivative ∂L
∂ul+1(x′

i,y
′
i)

is already computed by the backwards function of the layer
on top of the derotation layer.

C. Loss Layer
The loss of the network can be defined as follows

L = Lrotation + λdLdetection + λRLRPN (2)

where Lrotation is the rotation network loss (refer to Eq.(3)),
Ldetection is the detection network loss (refer to Eq.(4)),
LRPN is the RPN loss as in Faster R-CNN [22]. The terms
are weighted by weight parameters λd, λR, which are set to 1
by default.
Rotation loss. For rotation estimation, we use L2 loss at the
end of rotation network. We get positive hand region proposals
and use them to train a network that can do regression on
the hand’s rotation, formulated as a two-dimensional vector
l = (cosα, sinα) , ( c√

c2+s2
, s√

c2+s2
). Here, c, s are outputs

of the final fully connected layer (FC) in rotation network, l
is enforced as a normalized pose vector by normalizing c, s,
and thus we can enforce Rα in Eq.(1) as a rotation matrix.
More exactingly, if l and l∗ are the predicted and ground truth
rotation estimation vectors, the rotation loss is

Lrotation(l, l
∗) =

1

m

∑
i

||li − l∗i ||22 (3)

To deduce the backward algorithm of rotation loss, the
partial derivative of Lrotation w.r.t li = (cosαi, sinαi) can
be calculated as follows:

∂Lrotation
∂ cosαi

=
2

m
(cosαi − cosα∗i )

∂Lrotation
∂ sinαi

=
2

m
(sinαi − sinα∗i )

where i is the index of a positive hand region proposal
in a mini-batch, αi and α∗i are the estimated and ground
truth rotation angle for hand region proposal i, and m is
the positive proposal number in a batch. Note that negative
training examples do not contribute to back-propagation of the
rotation loss. The intuition is that negative training data does
not contribute any useful information to the rotation estimation
task. Therefore, the negative sample should not change the
network weight of the rotation estimation network in any way,
which in practice is implemented by locking the gradient to
zero during the back-propagation.

We also need to compute the partial derivative of li =
(cosαi, sinαi) w.r.t. ci, si, which can be calculated as follows:

∂ cosαi
∂ci

= (c2i + s2i )
− 1

2 − c2i (c2i + s2i )
− 3

2

∂ cosαi
∂si

= −cisi(c2i + s2i )
− 3

2

∂ sinαi
∂ci

= −cisi(c2i + s2i )
− 3

2

∂ sinαi
∂si

= (c2i + s2i )
− 1

2 − s2i (c2i + s2i )
− 3

2

where ci, si are outputs of the final fully connected layer (FC)
in rotation network for hand region proposal i in a mini-batch.
Detection loss. For detection task, we use a simple cross-
entropy loss at the end of detection network. Denote D∗ to be
the ground truth object labels, and we use the detection loss
as follows

Ldetection(D,D
∗) = − 1

n

∑
i

∑
j

D∗i log(Di) (4)

where Di =
e
zij∑1

j=0 e
zi
j

is the prediction of class j for proposal

i given the output z of the final fully connected layer in
detection network, n is the training proposal number in a
batch.
RPN loss. For RPN network, we use the same loss function as
in Faster R-CNN, which consists of objectness classification
loss and bounding box regression loss.

D. Implementation Details

In this section, we give more details for training with
different region proposals.

1) Training with RPN: The network contains three major
components - RPN network, rotation estimation network,
and detection network. The shared feature map or data flow
crossing derotation layer, and therefore require careful training
strategy to make sure a good convergence.

We adopt the strategy that first finds good initial for each
component and then enables joint optimization. Firstly, the
weights of shared network and RPN are initialized by pre-
training a model for PASCAL VOC detection benchmark [22].
Secondly, we use the proposals to train rotation network, and
then use derotated features after ROI pooling network to train
detection network. After the network parameters converge to
reasonable good local optima, we enable all the network and
optimize in an end-to-end manner for all tasks. During train-
ing, the rotation network is randomly initialized by drawing
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weights from a zero-mean Gaussian distribution with standard
deviation 0.01, and the detection network is initialized by by
pretraining a model for PASCAL VOC detection benchmark.

We follow the configuration of Faster R-CNN to prepare
training data. Each mini-batch randomly samples 256 anchors
from a single image, where the ratio of positive and negative
anchors is 1:1. A RPN region proposal is considered to be
positive if the IOU with a ground truth bounding box is larger
than 0.7; negative if the IOU with all ground truth bounding
box is smaller than 0.3; discarded otherwise. For negative
training data, they do not contribute any gradient during the
back propagation from the rotation network.

2) Training with our Deep Proposals: The network con-
tains two pathways that interact with each other through the
derotation layer. To train the model, we adopt a divide and
conquer strategy. We first initialize the shared network and
the detection network with the model pretrained on ImageNet,
and only fine tune on the rotation estimation task. Then, we
fix these two networks but enable the detection network, and
fine tune for the hand binary classification task. After the
network parameters converge to reasonable good local optima,
we enable all the network and optimize in a end-to-end manner
for both tasks.

We follow the configuration of R-CNN to prepare training
data. We take our deep feature based proposals as the training
data. Depending on the IOU with ground truth, a region
proposal is considered to be positive if the IOU is larger
than 0.5; negative if the IOU is smaller than 0.5; discarded
otherwise, which ends up with about 10K positives and 49
million negatives. Since the number of positive and negative
data is extremely imbalanced, we use all the positives and
randomly sampled 30 million negatives. We also ensure the
ratio between positive and negative data in each mini-batch
to be 1:1. For the negative data, they do not contribute
any gradient during the back propagation from the rotation
network.

3) Post-processing: During testing process, region pro-
posals often overlap with each other, thus we adopt non-
maximum suppression (NMS) on region proposals based on
their detection score. The IOU threshold for NMS is fixed at
0.3.

IV. EXPERIMENTS

A. Dataset and Evaluation
The proposed method is evaluated on widely-used Oxford

hand dataset [7] and EgoHands dataset [25]. The Oxford
hand dataset contains 13050 hands annotated with bounding
box and rotation from images collected from various public
image datasets. The dataset is considered to be diverse as
there is no restriction imposed on the pose or visibility of
people, and background environment. Oxford hand dataset
has much cluttered background, more viewpoint variations
and articulated shape changes than other popular hand dataset
such as Signer [26] and VIVA [27]. The EgoHands dataset
[25] contains 48 Google Glass videos of complex, first-person
interactions between two people, which are also annotated
with bounding box and rotation. This dataset is mainly used
to recognize hand activities in first-person computer vision.
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(c) Two-stage CNN
Fig. 4. Network architectures of two comparison pipeline. (a) Our model
(RPN, rotate image). (b) Our model (joint). (c) Two-stage CNN. The CNNs
before and after derotation are trained one by one. In (b)(c), RELU layer for
each fully connected layer is not shown for simplicity.

To demonstrate the performance of the whole system, we
evaluate the region proposal generation, the rotation estima-
tion, and final detection performance respectively. For region
proposal generation, we measure the percentage of positive
data that is covered by any proposal with an IOU larger
than 0.5. To further show the localization precision, we also
calculate the Mean Average Best Overlap (MABO) [19],
which is a standard metric to measure the quantity of the
object hypotheses. For rotation estimation, we measure the
difference between the estimation and the ground truth. For
the detection, we use the typical average precision (AP) and
precision-recall curve with a threshold 0.5 on IOU.

We first introduce our model and several alternative archi-
tectures as baselines or for ablation study:

1) Our model (RPN): It is based upon Faster R-CNN
network, and its details are in Section III;

2) Our model (RPN, rotate image): It is based upon Faster
R-CNN and R-CNN. Fig. 4 (a) shows the network
architecture. Use RPN to get proposals, estimate rotation
with the feature after ROI pooling, extract 300 image
proposals, crop them in the input image and resize to
224× 224, derotate each image proposal, and then feed
to R-CNN for classification;

3) Our model (joint): It is based upon R-CNN network.
Fig. 4 (b) shows the network architecture. Use our deep
feature based proposal method to get proposals, resize
to 224×224, and use an end-to-end training pipeline of
the shared network, rotation and detection network;

4) Our model (seperated): It has the same network archi-
tecture as our model (joint). The shared 3 convolution
layers are kept unchanged, and the rotation and detection
networks are trained separately.

5) Two-stage CNN: It is based upon R-CNN network and
uses our deep proposal. Fig. 4 (c) shows the network
architecture. Use one R-CNN network to regress the
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Fig. 5. Trade-off between recall (a) and MABO (b) of the object hypotheses
in terms of bounding boxes on the Oxford hand test set.

TABLE I
PROPOSAL GENERATION PERFORMANCE ON THE OXFORD HAND TEST

DATA. #WIN MEANS THE WINDOW NUMBERS.

Method Recall MABO #win
Region proposal network (RPN) 95.9% 79.2% 300

Our proposal method 99.9% 74.1% 7644
Our proposal method 100% 76.1% 17489

Selective search 46.1% 41.9% 13771
Objectness 90.2% 61.6% 13000

2D rotation for each region proposal, and feed the
derotated image proposal to the other R-CNN network
for detection;

6) Direct angle regression with CNN: It has the same
network architecture as our model (joint) except that
rotation is estimated with direct angle regression. During
the comparison, the vector l in loss (3) is replaced by
the corresponding rotation angle.

B. Performance on Oxford Hand Dataset

1) Region Proposal Generation: Table I show comparisons
between RPN [22] and our deep feature proposals to the
traditional segmentation based algorithms such as selective
search [19] and objectness [20].

In term of the recall, deep feature proposal achieves the best
performance, nearly 100%, which is significantly higher than
MABO with only about half of the number of proposals (7644
vs. 13000+) used in selective search and objectness. Qualita-
tively, selective search fails due to the fact that it relies much
on over-segmentation and may not be suitable for complex
scenarios with cluttered background and many connected skin-
like regions, while deep feature proposal could take advantage
of the discriminative power of the articulated local shape of
the hand and generate reliable proposals. Fig. 5 shows that
our deep feature proposal ensures high recall while keeping
the number of proposal per image comparable. Fig. 6 shows
qualitative comparison between our deep feature proposals to
selective search and objectness. We can observe that our deep
feature proposals have better localization performance. In term
of the efficiency, RPN achieves a slightly lower recall than the
deep feature proposal but with significantly fewer number of
proposals.

2) Rotation Estimation: We first demonstrate that the rota-
tion network can produce reasonable in-plane rotation estima-
tion. Table II shows the performance of the rotation estimation.
When RPN is used to extract proposals, the rotation estimation

ours

(a) Our deep feature proposal

Objectness

(b) Objectness

Selective search

(c) Selective search
Fig. 6. Comparison between our deep feature proposal generation to the
traditional segmentation based algorithms. Examples of locations for objects
whose Best Overlap score is around MABO of our method, objectness and
selective search. The green boxes are the ground truth. The red boxes are
created using our proposal generation method. We only show one proposal
for each image to give clear illustration of proposal localization performance.

TABLE II
ROTATION ESTIMATION PERFORMANCE ON THE OXFORD HAND TEST
DATA. ROTATION IS CORRECT IF THE DISTANCE IN DEGREE BETWEEN

PREDICTION AND GROUND TRUTH IS LESS THAN δα = 10◦, 20◦, 30◦ . WE
COMPARE THE ROTATION ESTIMATION RESULTS ON THE HAND TEST DATA

WITH ONLY ROTATION MODEL, AND JOINT ROTATION AND DETECTION
MODEL.

Method ≤ 10◦ ≤ 20◦ ≤ 30◦

Our model (RPN) 40.0% 63.8% 75.1%
Our model (joint) 47.8% 70.9% 80.2%

Our model (seperated) 45.6% 70.1% 79.8%
Two-stage CNN 46.1% 70.1% 79.8%

Direct angle regression with CNN 27% 44% 56%

is good. When our deep feature based proposals are used, we
can see that the prediction for 45.6% of the data falls in 10
degree around the ground truth, and 70.1% for 20 degree,
79.8% for 30 degree. Examples of hand rotation estimation
results on test images are also shown in Fig. 7. We see that our
rotation model leads to excellent performance and the rotation
estimation results with our deep feature proposal are a little
better than those with RPN.

We compare our method with direct angle regression with
CNN. During the comparison, the vector l in loss (3) is
replaced by the corresponding rotation angle. We can observe
that the two dimensional representation of rotation (refer to
results in Table II) leads much better rotation estimation results
than direct angle representation.

3) Detection Performance: When RPN is used to extract
image region proposals, we compare our model to state-of-
the-art approaches such as Faster R-CNN [22]. Faster R-CNN
does not explicitly handle rotation. In Fig. 8, we compare the
precision-recall using Faster R-CNN and our model with RPN.
AP of our model with RPN is 2% higher than AP of Faster
R-CNN [22]. AP of our model with RPN is 0.4% lower than
our model with RPN and rotating image, while our model with
RPN is 10 times more efficient (refer to Table IV).

When our deep feature proposals are used, we compare our
model to approaches such as R-CNN [28], DPM-based method
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Fig. 7. Examples of hand rotation estimation results on proposals of test images. The red and green arrows indicate the estimated and ground truth rotation
angles, respectively. We only show one detected hand for each image in order to give better illustration of rotation estimation results.

TABLE III
AVERAGE PRECISION (AP) ON THE OXFORD HAND TEST DATA.

Method AP
Our model (RPN) 57.7%

Our model (RPN, rotate image) 58.1%
Faster R-CNN 55.7%

Our model (joint) 48.3%
Our model (seperated) 47.3%

Two-stage CNN 46.2%
R-CNN 42.3%
ST-CNN 40.6%
DP-DPM 29.2%

DPM 36.8%

Recall
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Faster R-CNN 55.7%
Ours(RPN) 57.7%
Ours(RPN,rotate image) 58.1%

Fig. 8. Precision-Recall curve comparing the Faster R-CNN, our detection
model with RPN, and our model with RPN (rotate image) on Oxford hand
database.

[7], DP-DPM [29] and ST-CNN [10], the first three of which
do not explicitly handle rotation. Fig. 9(a) shows the precision-
recall curves, and the number after each algorithm is AP.

Our AP on Oxford hand dataset is 48.3% for our model
(joint), which is significantly better (11.5%, 6% higher) than

the state of the art [7], in which AP = 36.8% is reached
with DPM trained with hand region, and AP = 42.3% is
reached with additional data such as hand context and skin
color model (we do not use such additional data). Our models,
joint or separated, are advantageous over seminal CNN-based
methods, AP of our separated model is 5% higher than R-
CNN, 6.7% higher than ST-CNN. This demonstrates that data
alignment with rotation is very critical for the classification
model in the detection network. In Fig. 10, we show some
results of our method on test images from Oxford hand
dataset, in which both detection bounding boxes and rotation
estimation results are shown. The discussion that ST-CNN may
not be an ideal hand detection model is shown in the appendix.

We give more experimental results of our hand detector on
Oxford hand dataset. Fig. 11 and Fig. 12 are examples of
high-scoring detection on Oxford hand database for outdoor
and indoor images, respectively. Obviously, our method works
well for both outdoor and indoor images, for images with
multiple and single hands. We give examples of false alarm
detection in Fig. 13, which indicates that skin areas (such as
face, arm, foot) are more likely to be misunderstood as hand
due to similar skin color, and some non-skin-like regions are
also easy to be misclassified. We believe that we can make the
hard negative more effective by running a skin area detection
[30] and intentionally add negative proposals from the skin
area into the training data.

4) Efficiency: We compare the running time with the previ-
ous state-of-the-arts method [7], R-CNN [28], DP-DPM [29]
in Table IV. Our model with RPN and rotating image is
less efficient than our model with RPN, and our model with
RPN is more efficient due to the efficient shared convolution
feature map, RPN, and ROI pooling. If our deep feature based
proposals are extracted, the time efficiency of our method is
still superior to that of the method in [7], and it is comparable
to that of R-CNN and DP-DPM. The running time with our
model (RPN) is about 0.1 seconds per image of 500 × 400
pixels on a quad-core 2.9GHz PC with Nvidia Titan X, while
previous method in [7] takes about 55 seconds per image. Our
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Fig. 9. Precision-Recall curve comparing the baseline and final results. (a) Comparison with baselines. DPM means the results with hand shape detector in
[7]. (b) Comparison with detection with ground truth rotation, a performance upper bound.

TABLE IV
AVERAGE TIME (SECOND/IMAGE) TO DETECT HANDS. COMPARISON ARE

MADE WITH STATE-OF-THE-ARTS DPM-BASED METHOD [7], R-CNN
[28], DP-DPM [29], OUR JOINT MODEL AND OUR MODEL WITH RPN.

NOTE THAT DPM MEANS THE RUNNING TIME WITH THE AUTHOR’S CODE
IN [7].

Method running time
Our model (RPN) 0.1

Faster R-CNN 0.08
Our model (RPN, rotate image) 1.0

Our model (joint) 8.0
DP-DPM 2.0
R-CNN 9.0
DPM 55.0

method is more efficient due to the use of region proposal
instead of sliding window, and derotating only once with
estimated angle instead of brute force rotating in [7].

C. Model Analysis

1) Is the Model Robust Against Region Proposal?: Our
model achieves desirable performance with both deep feature
proposal and region proposal network, which shows that our
model can jointly work with a variety of region proposal
methods.

2) Is The Model Well Optimized?: In order to understand
if the model is properly optimized with explicit rotation
estimation, we train a detection network with our deep feature
proposals and the ground truth rotations. The precision-recall
curve is shown in Fig. 9(b). The average precision is 50.9%,
which can be considered as a performance upper bound under
the current network topology. Again, it shows that aligning
data to supervised orientation could great benefit the detection
model. Also, our performance is only 2.6% lower than this
upper bound, which indicates our system is well optimized.

3) Does Joint Training Help?: Conceptually, it is beneficial
to train a network by jointly optimizing over multiple related
tasks. We investigate this issue here by comparing a model
without jointly training to our joint model. To obtain a non-
jointly optimized model, our model (seperated), we still follow

the divide and conquer fashion of parameter initialization, but
allow the rotation network and the detection network to have
shared first 3 layers for feature extraction. This results in about
1% drop on rotation estimation (refer to Table II) and 1.1%
drop on average precision (refer to Fig. 9(b)).

For the two-stage CNN, we use one CNN for rotation
estimation, and the other CNN for detection. This results
in about 3% drop on rotation estimation (refer to Table II)
and 2.1% drop on average precision (refer to Table III) than
our joint model. Overall, we demonstrate that joint training
allows multiple tasks to share mutually useful information,
and provides a compact and efficient network topology.

4) Derotating Feature or Image Proposal?: We compare
our method by derotating feature maps (ours (RPN)) with the
method by derotating original image proposals, ours (RPN,
rotate image). AP of our model (RPN) is about 0.4% lower
than AP of ours (RPN, rotate image). However, our model
(RPN) is 10 times efficient than ours (RPN, rotate image),
due to the fact that all the proposals share convolution feature
map, while each proposal in ours (RPN,rotate image) must be
warped to the same size and then the convolution features can
be calculated, a less efficient pipeline.

5) Does Our Derotation Layer Help Under Different Net-
works?: We compare hand detection performance under dif-
ferent network architectures. Our model (RPN) is based upon
Faster R-CNN, and our model (joint) is based upon R-CNN.
AP of our model (RPN) is 2% higher than AP of Faster R-
CNN, and AP of our model (joint) is 6% higher than AP of
R-CNN. Therefore, the derotation layer is helpful to improve
AP for different networks just by adding rotation networks and
a derotation layer.

D. Performance on EgoHands dataset

In order to show the generalization power of our method,
we test our pipeline on EgoHands dataset [25]. Fig. 15 shows
precision-recall curve comparing the baseline and final results
on EgoHands dataset, and the number after each algorithm
is the average precision (AP). Our model (seperated) means
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Fig. 10. Examples of high-scoring detection on Oxford hand database. The rotation estimation is illustrated with red arrows.

Fig. 11. Examples of high-scoring detection on Oxford hand database
(outdoor images). The rotation estimation is illustrated with red arrows.

that the shared 3 convolution layers are kept unchanged, and
the rotation and detection networks are trained separately with
shared network not tuned, and our model (joint) means that
the network is end-to-end trained. Fig. 14 shows examples
of high-scoring detection on Egohands database. The rotation
estimation performance on Egohands dataset are shown in
Table V.

We compared our pipeline with the state-of-the-art detection

TABLE V
ROTATION ESTIMATION PERFORMANCE ON EGOHANDS DATASET.

Method ≤ 10◦ ≤ 20◦ ≤ 30◦

Our model (joint) 49.0% 76.7% 87.1%
Our model (seperated) 48.6% 76.6% 87.3%

algorithm in [25]. We implement the state-of-the-art hand
detector on this dataset with the network prototxt and Caf-
femodel provided by [25]. For more rigorous evaluation, we
compare detection performance of the method in [25] and our
method with the same region proposals, NMS and the other
experiment settings. The average precision with our seperated
model (AP=75.7%) is higher than the results with baseline
(AP=73.3%) (refer to Fig. 15), which indicates that rotation
information is helpful to improve the detection results. We
then compare the rotation estimation and detection results
with separated and joint models. We can see that the rotation
estimation results with our joint model is slightly better than
the rotation estimation results with separated model. Separated
model results in 1.4% drop on average precision than joint
model. Therefore, we again demonstrate that joint training
allows multiple tasks to share mutually useful information,
and provides a compact and efficient network topology.
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Fig. 12. Examples of high-scoring detection on Oxford hand database (indoor images). The rotation estimation is illustrated with red arrows.

V. CONCLUSION

Hand detection and pose estimation are important tasks
for interaction applications. Previous works mostly solved the
problems as separated tasks. In this paper, we explore the
feasibility of joint hand detection and rotation estimation with
CNN, which is based on our online derotation layer planted
in the network. Our experimental results demonstrate that
our method is capable of state-of-the-art hand detection on
widely-used public benchmarks. The detection network can be
extended to use hand context and more sophisticated rotation
model.

APPENDIX A
PRELIMINARY ANALYSIS ON ST-CNN

We first show that ST-CNN has multiple comparative local
optima under different transformation. Take affine transforma-
tion as an example, the point-wise transformation layer within
ST-CNN is formulated as xs = Aθx

t, where xt is the target
coordinates of the regular grid in the output feature map, xs is
the source coordinates of the input feature map that define the
sampling points, and Aθ is the affine transformation matrix to
optimize.

Suppose Aθ after optimization aligns input feature maps
into a certain pose. Denote Bβ is an arbitrary 2D affine
transformation, and obviously BβAθ can also align feature
maps, but in different target poses. As a result, the output
feature maps via Aθ and BβAθ are not the same but both
aligned. The detection networks trained with two sets of

aligned features would have different network weights, but are
very likely to have similar detection performance. Therefore,
the loss function could reach comparative local minima with
either Aθ or BβAθ.

We now know that many combinations of transformation
parameters and detection weights could result in similar detec-
tion performance, i.e. ambiguous rotation estimation and many
local minima. The transformation space is typically huge and
would require much more data and time to converge. We adopt
a supervised approach to get the rotation parameters. Our
network will not wonder back and forth between ambiguous
transformations, but insists on moving towards the desired
pose.

We conduct hand detection experiment with ST-CNN. We
add a spatial transformation layer after the input data layer of
an Alexnet. Fig. 16 shows hand proposals transformed with
affine transformation via ST-CNN. It shows that the hand
proposals are not well aligned. In fact, from the result we
can see that the ST-CNN fails to learn the transformation that
aligns input proposals, but retreats back to a trivial translation
that only captures the major part of the object, i.e. palm region
in our case, which is a bad local optima. While the transformed
proposals can be still used for the detection network followed,
key hand context information is missing (The importance of
context for hand and generic object detection is elaborated in
[7] [31]). Therefore, the detection performance with ST-CNN
could be poor (refer to Fig. 9(a). The performance of ST-
CNN is even worse than R-CNN in hand detection task). In
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(a) (b)

Fig. 13. Examples of false alarm detection on Oxford hand database. (a) false alarm with skin-like region. (b) false alarm with non-skin region.

Fig. 14. Examples of high-scoring detection on Egohands database. The rotation estimation is illustrated with red arrows.

summary, for hand detection task, ST-CNN is prone to learning
ambiguous transformation, resulting images often miss key
context information, which may not be an ideal model for
hand detection.
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